Location of Repository

Asymmetric electron and hole transport in a high-mobility n-type conjugated polymer

By Gert-Jan A.H. Wetzelaer, Martijn Kuik, Yoann Olivier, Vincent Lemaur, Jérôme Cornil, Simone Fabiano, Maria Antonietta Loi and Paul W.M. Blom

Abstract

Electron- and hole-transport properties of the n-type copolymer poly{[N,N'-bis(2-octyldodecyl)-naphthalene-1,4,5,8-bis(dicarboximide)-2,6-diyl]-alt-5,5'-(2,2'-dithiophene)} [P(NDI2OD-T2), PolyeraActivInkTM N2200] are investigated. Electron- and hole-only devices with Ohmic contacts are demonstrated, exhibiting trap-free space-charge-limited currents for both types of charge carriers. While hole and electron mobilities are frequently equal in organic semiconductors, room-temperature mobilities of 5 × 10−8 m2/Vs for electrons and 3.4 × 10−10 m2/Vs for holes are determined, both showing universal Arrhenius temperature scaling. The origin of the large difference between electron and hole mobility is explained by quantum-chemical calculations, which reveal that the internal reorganization energy for electrons is smaller than for holes, while the transfer integral is larger. As a result, electron transport is intrinsically superior to hole transport under the same injection and extraction conditions.

Year: 2012
OAI identifier: oai:ub.rug.nl:dbi/50854248533c0
Download PDF:
Sorry, we are unable to provide the full text but you may find it at the following location(s):
  • http://zernike.eldoc.ub.rug.nl... (external link)
  • Suggested articles


    To submit an update or takedown request for this paper, please submit an Update/Correction/Removal Request.