Asymmetric electron and hole transport in a high-mobility n-type conjugated polymer

Abstract

Electron- and hole-transport properties of the n-type copolymer poly{[N,N'-bis(2-octyldodecyl)-naphthalene-1,4,5,8-bis(dicarboximide)-2,6-diyl]-alt-5,5'-(2,2'-dithiophene)} [P(NDI2OD-T2), PolyeraActivInkTM N2200] are investigated. Electron- and hole-only devices with Ohmic contacts are demonstrated, exhibiting trap-free space-charge-limited currents for both types of charge carriers. While hole and electron mobilities are frequently equal in organic semiconductors, room-temperature mobilities of 5 × 10−8 m2/Vs for electrons and 3.4 × 10−10 m2/Vs for holes are determined, both showing universal Arrhenius temperature scaling. The origin of the large difference between electron and hole mobility is explained by quantum-chemical calculations, which reveal that the internal reorganization energy for electrons is smaller than for holes, while the transfer integral is larger. As a result, electron transport is intrinsically superior to hole transport under the same injection and extraction conditions.

    Similar works

    Full text

    thumbnail-image

    University of Groningen Digital Archive

    redirect
    Last time updated on 06/08/2013

    This paper was published in University of Groningen Digital Archive.

    Having an issue?

    Is data on this page outdated, violates copyrights or anything else? Report the problem now and we will take corresponding actions after reviewing your request.