Skip to main content
Article thumbnail
Location of Repository

Assembly of the Fungal SC3 Hydrophobin into Functional Amyloid Fibrils Depends on Its Concentration and Is Promoted by Cell Wall Polysaccharides

By Karin Scholtmeijer, Marcel L. de Vocht, Rick Rink, George T. Robillard and Han A.B. Wösten

Abstract

Class I hydrophobins function in fungal growth and development by self-assembling at hydrophobic-hydrophilic interfaces into amyloid-like fibrils. SC3 of the mushroom-forming fungus Schizophyllum commune is the best studied class I hydrophobin. This protein spontaneously adopts the amyloid state at the water-air interface. In contrast, SC3 is arrested in an intermediate conformation at the interface between water and a hydrophobic solid such as polytetrafluoroethylene (PTFE; Teflon). This finding prompted us to study conditions that promote assembly of SC3 into amyloid fibrils. Here, we show that SC3 adopts the amyloid state at the water-PTFE interface at high concentration (300 µg ml-1) and prolonged incubation (16 h). Moreover, we show that amyloid formation at both the water-air and water-PTFE interfaces is promoted by the cell wall components schizophyllan (β(1–3),β(1–6)-glucan) and β(1–3)-glucan. Hydrophobin concentration and cell wall polysaccharides thus contribute to the role of SC3 in formation of aerial hyphae and in hyphal attachment.

Year: 2009
OAI identifier: oai:ub.rug.nl:dbi/4b683a46270ca
Download PDF:
Sorry, we are unable to provide the full text but you may find it at the following location(s):
  • http://gbb.eldoc.ub.rug.nl/roo... (external link)
  • Suggested articles


    To submit an update or takedown request for this paper, please submit an Update/Correction/Removal Request.