Location of Repository

Role of Scalar Protons in Metabolic Energy Generation in Lactic Acid Bacteria

By J.S. Lolkema, B. Poolman and W.N. Konings

Abstract

Lactic acid bacteria are able to generate a protonmotive force across the cytoplasmic membrane by various metabolic conversions without involvement of substrate level phosphorylation or proton pump activity. Weak acids like malate and citrate are taken up in an electrogenic process in which net negative charge is translocated into the cell thereby generating a membrane potential. The uptake is either an exchange process with a metabolic end-product (precursor/product exchange) or a uniporter mechanism. Subsequent metabolism of the internalized substrate drives uptake and results in the generation of a pH gradient due to the consumption of scalar protons. The generation of the membrane potential and the pH gradient involve separate steps in the pathway. Here it is shown that they are nevertheless coupled. Analysis of the pH gradient that is formed during malolactic fermentation and citrate fermentation shows that a pH gradient, inside alkaline, is formed only when the uptake system forms a membrane potential, inside negative. These secondary metabolic energy generating systems form a pmf that consists of both a membrane potential and a pH gradient, just like primary proton pumps do. It is concluded that the generation of a pH gradient, inside alkaline, upon the addition of a weak acid to cells is diagnostic for an electrogenic uptake mechanism translocating negative charge with the weak acid.

Year: 1995
OAI identifier: oai:ub.rug.nl:dbi/497db580cac03
Download PDF:
Sorry, we are unable to provide the full text but you may find it at the following location(s):
  • http://gbb.eldoc.ub.rug.nl/roo... (external link)
  • Suggested articles


    To submit an update or takedown request for this paper, please submit an Update/Correction/Removal Request.