The enzymology of the bacterial phosphoenolpyruvate-dependent sugar transport systems

Abstract

The phosphoenolpyruvate-dependent sugar transport system (PTS) is present in a large variety of bacteria. It catalyzes transport and phosphorylation of hexoses and hexitols at the expense of phosphoenolpyruvate. Only three or four enzymes are required for this entire sequence. Each component has been isolated and purified to homogeneity from one bacterial species or another allowing recent investigations into mechanistic aspects of energy coupling, energy conservation, transport and regulation using well-characterized enzymes. In each case the phosphorylation of the enzyme is a key element in that enzymes function. The initial step in the energy conversion process is the EI catalyzed conversion of phosphoenolpyruvate to pyruvate and P-HPr. EI is a metal requiring hydrophobic enzyme which is active only as a dimer. Kinetic and gel filtration data confirm that it forms functional ternary complexes with HPr or P-Hpr and phosphoenolpyruvate or pyruvate which influence both the degree of dimerization and the specific activity of the dimer. The dimer appears to carry only one phosphoryl group suggesting that negative cooperativity or a flip-flop mechanism may be involved in the sequence of phosphoryl group transfer. Many of the PTS phosphoenzyme intermediates carry the phosphoryl group as a phospho-histidine. A general mechanism for the transfer of the phosphoryl group to and from the active site histidine residue in each protein has been established with high resolution 1H NMR data. At physiological pH the active site histidine is deprotonated, whereas the phosphohistidine is protonated. Consequently the histidine, as a strong nucleophile, can abstract the phosphoryl group from the donor while protonation destabilizes the phosphohistidine facilitating passage of the phosphoryl group to the following enzyme intermediate. The change in protonation state accompanies a phosphorylation induced conformational change in the carrier. The ability of the PTS to regulate the activity of other permeases and catabolic enzymes has been attributed EIIIGlc. Data obtained with mutants suggest that changes in the phosphorylation state alter the regulatory properties of the enzyme. The nonphosphorylated species blocks various permeases and suppresses adenylate cyclase activity thereby inhibiting the synthesis of catabolic enzyme systems. The phosphorylated species stimulates adenylate cyclase and permits the uptake of inducers leading to the initiation of catabolic enzyme synthesis. Experiments with the isolated EIIIGlc confirm that a phosphoenzyme intermediate exists. Transport and phosphorylation of the sugar are catalyzed by a membrane-bound EII via a phosphoenzyme intermediate which can be reached from P-HPr, P-EIII or sugar-P. The phosphorylation state controls the affinity of the enzyme for its substrates. EII is high affinity for P-HPr or P-EIII and low affinity for sugar. P-EII is high affinity for sugar and low affinity for P-HPr or P-EIII. The affinity of the enzyme for sugar substrates is controlled by the oxidation state of a dithiol. The reduced, dithiol form is high affinity for sugar substrates. The oxidized, disulfide form, is low affinity. Phosphorylation of the enzyme should shift the affinity for substrates by altering the oxidation state of the enzyme.

Similar works

Full text

thumbnail-image

University of Groningen Digital Archive

redirect
Last time updated on 06/08/2013

This paper was published in University of Groningen Digital Archive.

Having an issue?

Is data on this page outdated, violates copyrights or anything else? Report the problem now and we will take corresponding actions after reviewing your request.