Location of Repository

Rate of environmental change determines stress response specificity

By Jonathan W. Young, James C. W. Locke and Michael B. Elowitz

Abstract

Cells use general stress response pathways to activate diverse target genes in response to a variety of stresses. However, general stress responses coexist with more specific pathways that are activated by individual stresses, provoking the fundamental question of whether and how cells control the generality or specificity of their response to a particular stress. Here we address this issue using quantitative time-lapse microscopy of the Bacillus subtilis environmental stress response, mediated by σ^B. We analyzed σ^B activation in response to stresses such as salt and ethanol imposed at varying rates of increase. Dynamically, σ^B responded to these stresses with a single adaptive activity pulse, whose amplitude depended on the rate at which the stress increased. This rate-responsive behavior can be understood from mathematical modeling of a key negative feedback loop in the underlying regulatory circuit. Using RNAseq we analyzed the effects of both rapid and gradual increases of ethanol and salt stress across the genome. Because of the rate responsiveness of σ^B activation, salt and ethanol regulons overlap under rapid, but not gradual, increases in stress. Thus, the cell responds specifically to individual stresses that appear gradually, while using σ^B to broaden the cellular response under more rapidly deteriorating conditions. Such dynamic control of specificity could be a critical function of other general stress response pathways

Publisher: National Academy of Sciences
Year: 2013
OAI identifier: oai:authors.library.caltech.edu:38076
Provided by: Caltech Authors

Suggested articles

Preview


To submit an update or takedown request for this paper, please submit an Update/Correction/Removal Request.