Article thumbnail
Location of Repository

Role of the first coordination shell in determining the equilibrium structure and dynamics of simple liquids

By Søren Toxværd and J. C. Dyre

Abstract

The traditional view that the physical properties of a simple liquid are determined primarily by its repulsive forces was recently challenged by Berthier and Tarjus, who showed that in some cases ignoring the attractions leads to large errors in the dynamics [L. Berthier and G. Tarjus, Phys. Rev. Lett. 103, 170601 (2009);10.1103/PhysRevLett.103.170601 J. Chem. Phys. 134, 214503 (2011)10.1063/1.3592709] . We present simulations of the standard Lennard-Jones liquid at several condensed-fluid state points, including a fairly low density state and a very high density state, as well as simulations of the Kob-Andersen binary Lennard-Jones mixture. By varying the range of the forces via a shifted-forces cutoff, results for the thermodynamics, dynamics, and structure show that the determining factor for getting the correct statics and dynamics is not whether or not the attractive forces per se are included in the simulations. What matters is whether or not interactions are included from all particles within the first coordination shell – the attractive forces can thus be ignored, but only at extremely high densities. The recognition of the importance of a local shell in condensed fluids goes back to van der Waals; our results confirm this idea and thereby the basic picture of the old hole and cell theories for simple condensed fluids.The traditional view that the physical properties of a simple liquid are determined primarily by its repulsive forces was recently challenged by Berthier and Tarjus, who showed that in some cases ignoring the attractions leads to large errors in the dynamics [L. Berthier and G. Tarjus, Phys. Rev. Lett. 103, 170601 (2009);10.1103/PhysRevLett.103.170601 J. Chem. Phys. 134, 214503 (2011)10.1063/1.3592709] . We present simulations of the standard Lennard-Jones liquid at several condensed-fluid state points, including a fairly low density state and a very high density state, as well as simulations of the Kob-Andersen binary Lennard-Jones mixture. By varying the range of the forces via a shifted-forces cutoff, results for the thermodynamics, dynamics, and structure show that the determining factor for getting the correct statics and dynamics is not whether or not the attractive forces per se are included in the simulations. What matters is whether or not interactions are included from all particles within the first coordination shell – the attractive forces can thus be ignored, but only at extremely high densities. The recognition of the importance of a local shell in condensed fluids goes back to van der Waals; our results confirm this idea and thereby the basic picture of the old hole and cell theories for simple condensed fluids

Publisher: American Institute of Physics
Year: 2011
DOI identifier: 10.1063/1.3643123
OAI identifier: oai:rudar.ruc.dk:1800/10694
Journal:
Download PDF:
Sorry, we are unable to provide the full text but you may find it at the following location(s):
  • http://dx.doi.org/10.1063/1.36... (external link)
  • Suggested articles


    To submit an update or takedown request for this paper, please submit an Update/Correction/Removal Request.