Location of Repository

Step Prediction During Perturbed Standing Using Center Of Pressure Measurements

By Milos R. Popovic, Kei Masani and Xavier Tortolero

Abstract

The development of a sensor that can measure balance during quiet standing and predict stepping response in the event of perturbation has many clinically relevant applica- tions, including closed-loop control of a neuroprothesis for standing. This study investigated the feasibility of an algorithm that can predict in real-time when an able-bodied individual who is quietly standing will have to make a step to compensate for an external perturbation. Anterior and posterior perturbations were performed on 16 able-bodied subjects using a pul- ley system with a dropped weight. A linear relationship was found between the peak center of pressure (COP) velocity and the peak COP displacement caused by the perturbation. This result suggests that one can predict when a person will have to make a step based on COP velocity measurements alone. Another important feature of this finding is that the peak COP velocity occurs considerably before the peak COP displacement. As a result, one can predict if a subject will have to make a step in response to a perturbation sufficiently ahead of the time when the subject is actually forced to make the step. The proposed instability detection algorithm will be implemented in a sensor system using insole sheets in shoes with minitur- ized pressure sensors by which the COPv can be continuously measured. The sensor system will be integrated in a closed-loop feedback system with a neuroprosthesis for standing in the near future

Topics: Posture, Balance Control, Center of Pressure, Neuroprosthesis, Functional Elec- trical Stimulation, Functional Neuromuscular Stimulation, Technology (General), T1-995, Technology, T, DOAJ:Technology (General), DOAJ:Technology and Engineering, Analytical chemistry, QD71-142, Chemistry, QD1-999, Science, Q, DOAJ:Analytical Chemistry, DOAJ:Chemistry, Chemical technology, TP1-1185
Publisher: MDPI AG
Year: 2007
DOI identifier: 10.3390/s7040459
OAI identifier: oai:doaj.org/article:0c0a130ee9d444898864cc18baa79d17
Journal:
Download PDF:
Sorry, we are unable to provide the full text but you may find it at the following location(s):
  • https://doaj.org/toc/1424-8220 (external link)
  • http://www.mdpi.com/1424-8220/... (external link)
  • https://doaj.org/article/0c0a1... (external link)
  • Suggested articles


    To submit an update or takedown request for this paper, please submit an Update/Correction/Removal Request.