Location of Repository

Development of a minimization instrument for allocation of a hospital-level performance improvement intervention to reduce waiting times in Ontario emergency departments

By Anderson Geoff, Rowe Brian H, Zwarenstein Merrick, Guttmann Astrid, Leaver Chad, Stukel Therese, Golden Brian, Bell Robert, Morra Dante, Abrams Howard and Schull Michael J

Abstract

<p>Abstract</p> <p>Background</p> <p>Rigorous evaluation of an intervention requires that its allocation be unbiased with respect to confounders; this is especially difficult in complex, system-wide healthcare interventions. We developed a short survey instrument to identify factors for a minimization algorithm for the allocation of a hospital-level intervention to reduce emergency department (ED) waiting times in Ontario, Canada.</p> <p>Methods</p> <p>Potential confounders influencing the intervention's success were identified by literature review, and grouped by healthcare setting specific change stages. An international multi-disciplinary (clinical, administrative, decision maker, management) panel evaluated these factors in a two-stage modified-delphi and nominal group process based on four domains: change readiness, evidence base, face validity, and clarity of definition.</p> <p>Results</p> <p>An original set of 33 factors were identified from the literature. The panel reduced the list to 12 in the first round survey. In the second survey, experts scored each factor according to the four domains; summary scores and consensus discussion resulted in the final selection and measurement of four hospital-level factors to be used in the minimization algorithm: improved patient flow as a hospital's leadership priority; physicians' receptiveness to organizational change; efficiency of bed management; and physician incentives supporting the change goal.</p> <p>Conclusion</p> <p>We developed a simple tool designed to gather data from senior hospital administrators on factors likely to affect the success of a hospital patient flow improvement intervention. A minimization algorithm will ensure balanced allocation of the intervention with respect to these factors in study hospitals.</p

Topics: Public aspects of medicine, RA1-1270, Medicine, R, DOAJ:Public Health, DOAJ:Health Sciences, Medicine (General), R5-920
Publisher: BioMed Central
Year: 2009
DOI identifier: 10.1186/1748-5908-4-32
OAI identifier: oai:doaj.org/article:17c354be1ac344418dba8192ad093503
Journal:
Download PDF:
Sorry, we are unable to provide the full text but you may find it at the following location(s):
  • https://doaj.org/toc/1748-5908 (external link)
  • http://www.implementationscien... (external link)
  • https://doaj.org/article/17c35... (external link)
  • Suggested articles


    To submit an update or takedown request for this paper, please submit an Update/Correction/Removal Request.