Location of Repository

Suspendable macromolecules are responsible for ice nucleation activity of birch and conifer pollen

By B. G. Pummer, H. Bauer, J. Bernardi, S. Bleicher and H. Grothe

Abstract

The ice nucleation of bioaerosols (bacteria, pollen, spores, etc.) is a topic of growing interest, since their impact on ice cloud formation and thus on radiative forcing, an important parameter in global climate, is not yet fully understood. Here we show that pollen of different species strongly differ in their ice nucleation behaviour. The average freezing temperatures in laboratory experiments range from 240 to 255 K. As the most efficient nuclei (silver birch, Scots pine and common juniper pollen) have a distribution area up to the Northern timberline, their ice nucleation activity might be a cryoprotective mechanism. Far more intriguingly, it has turned out that water, which has been in contact with pollen and then been separated from the bodies, nucleates as good as the pollen grains themselves. The ice nuclei have to be easily-suspendable macromolecules located on the pollen. Once extracted, they can be distributed further through the atmosphere than the heavy pollen grains and so presumably augment the impact of pollen on ice cloud formation even in the upper troposphere. Our experiments lead to the conclusion that pollen ice nuclei, in contrast to bacterial and fungal ice nucleating proteins, are non-proteinaceous compounds

Topics: Environmental sciences, GE1-350, Geography. Anthropology. Recreation, G, DOAJ:Environmental Sciences, DOAJ:Earth and Environmental Sciences, Physics, QC1-999, Chemistry, QD1-999
Publisher: Copernicus Publications
Year: 2012
DOI identifier: 10.5194/acp-12-2541-2012
OAI identifier: oai:doaj.org/article:28f81bbad84045fe99a39c752786d401
Journal:
Download PDF:
Sorry, we are unable to provide the full text but you may find it at the following location(s):
  • https://doaj.org/toc/1680-7324 (external link)
  • https://doaj.org/toc/1680-7316 (external link)
  • http://www.atmos-chem-phys.net... (external link)
  • https://doaj.org/article/28f81... (external link)
  • Suggested articles


    To submit an update or takedown request for this paper, please submit an Update/Correction/Removal Request.