Skip to main content
Article thumbnail
Location of Repository

The Impact of Decoherence and Dissipation on Cosmological Systems and on the Generation of Entanglement

By Friedemann Queißer


The physics of open quantum systems, and therefore the phenomenon of decoherence, has become important in many branches of research. Within this thesis, we investigate the system--environment interaction in the context of different problems. The influence of decoherence is ubiquitous and, due to the scale independence of quantum theory, not limited to microscopic systems. One of the great open problems in theoretical physics is the appearance of a cosmological constant which differs by many orders of magnitude from the theoretical predicted value. In the first part of this thesis we will address this question within the framework of quantum mechanics. The considerations are based on a quantum mechanical model which explains the value of the cosmological constant without introducing extremely small numbers. Decoherence, based on the uncontrollable entanglement with the environment, can explain the localization of the vacuum energy to the classical observed value. The model mentioned above allows, in principle, the tunneling into a universe with a different vacuum energy. We investigate the modification of the tunneling rate due to dissipative effects which follow from the system--bath interaction. Closely related to the cosmological constant problem and subject of the second part of this thesis is the spontaneous decay of a quantum field vacuum. Using a semiclassical approximation it is possible to investigate this process within the framework of the path integral formalism. We discuss the quantum--to--classical transition of the spontaneously nucleated vacuum bubbles. Furthermore, we investigate the dependence of the decay rate on the space-time backgrounds. The third part of this thesis is dedicated to the interaction between quantum systems and their environment in a different context. We investigate the generation of entanglement between two systems which are interacting indirectly with each other through the coupling to a heat bath. The interaction--induced entanglement will be destroyed rapidly through decoherence and dissipation. We will show that it is possible to generate a significant amount of entanglement by imposing certain boundary conditions to the bath. Furthermore, the dependence of the entanglement generation on the spatial separation of the systems will be analyzed. Specifically we will examine the bathinduced entanglement of oscillators and spins

Topics: ddc:530
Year: 2010
OAI identifier:

Suggested articles

To submit an update or takedown request for this paper, please submit an Update/Correction/Removal Request.