Location of Repository

Kernel density estimation on the torus

By M Di Marzio, A Panzera and CC Taylor

Abstract

Kernel density estimation for multivariate, circular data has been formulated only when the sample space is the sphere, but theory for the torus would also be useful. For data lying on a d-dimensional torus (d >= 1), we discuss kernel estimation of a density, its mixed partial derivatives, and their squared functionals. We introduce a specific class of product kernels whose order is suitably defined in such a way to obtain L-2-risk formulas whose structure can be compared to their Euclidean counterparts. Our kernels are based on circular densities; however, we also discuss smaller bias estimation involving negative kernels which are functions of circular densities. Practical rules for selecting the smoothing degree, based on cross-validation, bootstrap and plug-in ideas are derived. Moreover, we provide specific results on the use of kernels based on the von Mises density. Finally, real-data examples and simulation studies illustrate the findings

Publisher: Elsevier Science BV
Year: 2011
OAI identifier: oai:eprints.whiterose.ac.uk:42947

Suggested articles

Preview


To submit an update or takedown request for this paper, please submit an Update/Correction/Removal Request.