Skip to main content
Article thumbnail
Location of Repository

An amalgamation of the Banach spaces associated with James and Schreier, Part I : Banach-space structure.

By Alistair Bird and Niels Jakob Laustsen

Abstract

We create a new family of Banach spaces, the James-Schreier spaces, by amalgamating two important classical Banach spaces: James' quasi-reflexive Banach space on the one hand and Schreier's Banach space giving a counterexample to the Banach-Saks property on the other. We then investigate the properties of these James-Schreier spaces, paying particular attention to how key properties of their `ancestors' (that is, the James space and the Schreier space) are expressed in them. Our main results include that each James-Schreier space is c_0-saturated and that no James-Schreier space embeds in a Banach space with an unconditional basis

Topics: QA Mathematics
Year: 2010
DOI identifier: 10.4064/bc91-0-3
OAI identifier: oai:eprints.lancs.ac.uk:39691
Provided by: Lancaster E-Prints

Suggested articles

Citations

  1. (1958). A connection between weakly unconditional convergence and weakly completeness of Banach spaces,
  2. (1951). A non-reflexive Banach space isometric with its second conjugate space, doi
  3. (2009). Amenability of algebras of approximable operators, doi
  4. An amalgamation of the Banach spaces associated with James and Schreier, Part II: Banach-algebra structure, this volume. doi
  5. (1967). An example concerning reflexivity,
  6. (1998). An introduction to Banach space theory, doi
  7. (1960). Banach spaces non-isomorphic to their Cartesian squares.
  8. (1950). Bases and reflexivity of Banach spaces, doi
  9. (2002). Commutators of operators on Banach spaces, doi
  10. (1992). Complexity of weakly null sequences, doi
  11. (1995). Compressible operators and the continuity of homomorphisms from algebras of operators, doi
  12. (1989). Continuity of derivations on B(E) for certain Banach spaces E, doi
  13. (1930). Ein Gegenbeispiel zur Theorie der schwachen Konvergentz,
  14. (1970). Homotopy type of linear groups of two classes of Banach spaces,
  15. (1977). James’ quasi-reflexive space is primary, doi
  16. (2001). K-theory for the Banach algebra of operators on James’s quasi-reflexive Banach spaces, doi
  17. (2001). Laustsen,K-theory for the Banach algebra of operators on James’s quasi-reflexive Banach spaces, doi
  18. (2002). Maximal ideals in the algebra of operators on certain Banach spaces, doi
  19. (1983). Modèles étalés des espaces de Banach,
  20. (1958). On bases and unconditional convergence of series in Banach spaces,
  21. (1977). On James’ quasi-reflexive Banach space, doi
  22. (1980). On James’ quasi-reflexive space as a Banach algebra,
  23. (1972). On reflexivity and summability,
  24. (2000). On the complemented subspaces of the Schreier spaces,
  25. (2010). Some remarks on James–Schreier spaces, doi
  26. (1930). Sur la convergence forte dans les champs Lp,
  27. (1988). The dual J of the James space has cotype 2 and the Gordon–Lewis property, doi
  28. (1988). The dual J∗ of the James space has cotype 2 and the Gordon–Lewis property, doi
  29. (1997). The James forest, doi
  30. (2006). Topics in Banach space theory, doi
  31. (1989). Tsirelson’s space, doi
  32. (1973). Uniformly non-`1 and B-convex Banach spaces, doi
  33. (2002). Weak amenability of A (E) and the geometry of E, doi
  34. (2005). Weakly compact approximation in Banach spaces,

To submit an update or takedown request for this paper, please submit an Update/Correction/Removal Request.