Location of Repository

Random Variate Generation by Numerical Inversion when only the Density Is Known

By Gerhard Derflinger, Wolfgang Hörmann and Josef Leydold


We present a numerical inversion method for generating random variates from continuous distributions when only the density function is given. The algorithm is based on polynomial interpolation of the inverse CDF and Gauss-Lobatto integration. The user can select the required precision which may be close to machine precision for smooth, bounded densities; the necessary tables have moderate size. Our computational experiments with the classical standard distributions (normal, beta, gamma, t-distributions) and with the noncentral chi-square, hyperbolic, generalized hyperbolic and stable distributions showed that our algorithm always reaches the required precision. The setup time is moderate and the marginal execution time is very fast and the same for all distributions. Thus for the case that large samples with fixed parameters are required the proposed algorithm is the fastest inversion method known. Speed-up factors up to 1000 are obtained when compared to inversion algorithms developed for the specific distributions. This makes our algorithm especially attractive for the simulation of copulas and for quasi-Monte Carlo applications. (author´s abstract)Series: Research Report Series / Department of Statistics and Mathematic

Topics: ACM G.3, non-uniform random variates / inversion method / universal method / black-box algorithm / Newton interpolation / Gauss-Lobatto integration
Publisher: Department of Statistics and Mathematics, WU Vienna University of Economics and Business
Year: 2008
OAI identifier: oai:epub.wu-wien.ac.at:epub-wu-01_e51

Suggested articles


To submit an update or takedown request for this paper, please submit an Update/Correction/Removal Request.