Isolation, Sequence, and Expression in Escherichia coli of the Pseudomonas sp. Strain ACP Gene Encoding 1-Aminocyclopropane-


Pseudomonas sp. strain ACP is capable of growth on l-aminocyclopropane-l-carboxylate (ACC) as a nitrogen source owing to induction of the enzyme ACC deaminase and the subsequent conversion of ACC to a-ketobutyrate and ammonia (M. Honma, Agric. Biol. Chem. 49:567-571, 1985). The complete amino acid sequence of purified ACC deaminase was determined, and the sequence information was used to clone the ACC deaminase gene from a 6-kb EcoRI fragment of Pseudomonas sp. strain ACP DNA. DNA sequence analysis of an EcoRI-PstI subclone demonstrated an open reading frame (ORF) encoding a polypeptide with a deduced amino acid sequence identical to the protein sequence determined chemically and a predicted molecular mass of 36,674 Da. The ORF also contained an additional 72 bp of upstream sequence not predicted by the amino acid sequence. Escherichia coli minicells containing the 6-kb clone expressed a major polypeptide of the size expected for ACC deaminase which was reactive with ACC deaminase antiserum. Furthermore, a lacZ fusion with the ACC deaminase ORF resulted in the expression of active enzyme in E. coli. ACC is a key intermediate in the biosynthesis of ethylene in plants, and the use of the ACC deaminase gene to manipulate this pathway is discussed. Pseudomonas sp. strain ACP and the yeast Hansenula saturnus are capable of utilizing the cyclopropanoid amin

Similar works

Full text

oai:CiteSeerX.psu: time updated on 11/2/2017

This paper was published in CiteSeerX.

Having an issue?

Is data on this page outdated, violates copyrights or anything else? Report the problem now and we will take corresponding actions after reviewing your request.