Skip to main content
Article thumbnail
Location of Repository

Dynamics of Surfactant Adsorption at Solid--Liquid Interfaces\ud

By ALEXANDER DAVID WOODS

Abstract

The adsorption kinetics of surfactants at the solid--liquid interface is of fundamental\ud interest to a wide variety of process including detergency, wetting of solid surfaces, agricultural sprays\ud and paper processing. Accordingly, a significant body of work\ud has been carried out to understand this field.\ud Much of this work has used the optical techniques of ellipsometry\ud and optical reflectometry or mass measurements from the quartz crystal microbalance.\ud These methods have the time resolution to measure surfactant adsorption kinetics but are\ud insensitive to chemical composition and thus produce limited information on the adsorption\ud of surfactant mixtures.\ud \ud The technique I adopt here, total internal reflection (TIR) Raman spectroscopy, provides detailed\ud information about the chemical composition of the surface with a time resolution of 2\,s.\ud The short penetration depth of the \ud probe laser into solution (${\sim}100$\,nm) provides surface sensitivity. The different components \ud of the adsorbed film are distinguished by their vibrational Raman spectra. The\ud Raman signal from a component in the adsorbed layer is linearly proportional to the amount of that \ud component present, allowing straightforward interpretation of the acquired data. I use principal component\ud analysis to deconvolute the recorded spectra.\ud \ud First I look at the equilibrium and kinetic aspects of the adsorption of two model surfactants \ud to a flat silica surface as single component systems: the\ud cationic surfactant cetyltrimethylammonium bromide (CTAB) and the non-ionic surfactant Triton X-100.\ud Use of the well-defined wall jet geometry provides known hydrodynamics allowing the mass transport to\ud the surface to be modelled. The mass transport model is coupled with a kinetic model consistent with\ud the Frumkin isotherm allowing the whole adsorption process to be captured. The fit between the\ud model and the experimental results helps to understand interactions on the surface.\ud \ud Secondly I look at \ud the two model surfactants adsorbing to silica as a mixed system. The adsorption isotherm shows strong synergistic behaviour with the addition \ud of small amounts of CTAB (${\sim}2$\%\ of the 2\,mM total surfactant concentration) doubling the adsorbed amount \ud of Triton X-100. This synergism has a marked influence on the kinetics: for example, when \ud Triton X-100 replaces CTAB the Triton X-100 surface excess overshoots its equilibrium value \ud and returns only very slowly to equilibrium. For systems above the cmc, the repartitioning \ud of surfactant between micelles and monomers results a local increase in the monomer concentration of Triton \ud X-100 resulting in a temporary spike in the Triton X-100 surface excess during the rinsing of\ud a mixed layer.\ud \ud Finally I study alternative model surfaces to silica. The adsorption to CTAB and Triton X-100 to a cellulose\ud surface is studied, and detailed equilibrium isotherms obtained by slow variation of the bulk \ud concentration controlled with a continuous stirred tank mixer. The preparation of the model cellulose\ud surface is also followed spectroscopically. Spectra are also acquired from mica surfaces in\ud optical contact with silica hemispheres; it is unfortunately not yet possible to acquire\ud useful data on adsorption at the mica--water interface

Year: 2011
OAI identifier: oai:etheses.dur.ac.uk:3277
Provided by: Durham e-Theses

Suggested articles

Citations

  1. [100] J. C. Dijt, M. A. Cohen Stuart, J. doi
  2. [107] C. Geroy, M. A. Cohen Stuart, K. Wong, B. Cabane and V. Bergeron, Langmuir, 2000, 16, 6422{6430. doi
  3. [108] K. Sakai, E. Smith, G. Webber, C. Schatz, E. Wanless, V. Butun, S. Armes and S. Biggs, Journal of Physical Chemistry B, 2006, 110, 14744{14753. doi
  4. [109] K. Sakai, M. Vamvakaki, E. G. Smith, E. J. Wanless, S. P. Armes and S. Biggs, Journal of Colloid and Interface Science, 2008, 317, 383{394. doi
  5. [110] E. Bitziou, N. C. Rudd, M. A. Edwards and P. R. Unwin, Analytical Chemistry, 2006, 78, 1435{1443. doi
  6. [111] T. D. Curwen, C. D. Bain and J. K. Eve, Journal of Physical Chemistry C, 2007, 111, 12305{12314. doi
  7. [112] J. Gooding, B. Coles and R. Compton, Journal of Physical Chemistry B, 1997, 101, 175{181. doi
  8. [113] J. Gooding, C. Brennan, J. Atherton, B. Coles and R. Compton, Journal of Physical Chemistry B, 1997, 101, 182{188. doi
  9. [114] E. Hecht, Optics, Addison-Wesley, 2nd edn., 1987.
  10. [115] S. G. Lipson, H. Lipson and D. S. Tannhauser, Optical Physics, Cambridge University Press, 3rd edn., 1995. doi
  11. [116] M. Born and E. Wolf, Principles of Optics, Pergamon Press, 6th edn., 1980.
  12. [117] D. A. Beattie, S. Haydock and C. D. Bain, Vibrational Spectroscopy, 2000, 24, 109{123. doi
  13. [118] P. R. Greene, Ph.D. thesis, University of Oxford, 2003.
  14. [119] P. W. Atkins and R. S. Friedman, in Molecular Quantum Mechanics, Oxford University Press, 3rd edn., 1997, ch. 10. Molecular rotations and vibrations.
  15. [121] C. V. Raman and K. S. Krishnan, Nature, 1928, 121, 501{502. doi
  16. [122] C. V. Raman and K. S. Krishnan, Proc. Roy. Soc. (London) A, 1928, 122, 23{35.
  17. [123] A. Smekal, Naturwissenschaften, 1923, 11, 873{875. doi
  18. [124] B. Crawford, Jr. and D. Swanson, in Infrared and Raman Spectroscopy, Part A, ed. E. G. Brame, Jr. and J. G. Grasselli, Marcel Dekker, Inc., 1976, ch. 1. An Introduction to Molecular Vibrations.
  19. [125] D. A. Long, The Raman Effect: A Unified Treatment of the Theory of Raman Scattering by Molecules, John Wiley & Sons, Ltd., 2002. doi
  20. [126] G. Davidson, in Group Theory For Chemists, Macmillan Education Ltd., 1991, ch. 8. Group theory and vibrational spectroscopy.
  21. [127] S. G. Kazarian and K. L. A. Chan, Applied Spectroscopy, 2010, 64, 135A{151A.
  22. [128] R. A. Dluhy, S. M. Stephens, S. Widayati and A. D. Williams, Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy, 1995, 51, 1413{1447. doi
  23. [129] B. L. Mojet, S. D. Ebbesen and L. Leerts, Chem. Soc. Rev., 2010, 39, 4643{ 4655. [130] D. Axelrod, in Fluorescence Microscopy of Living Cells in Culture Part B. Quantitative Fluorescence Microscopy–Imaging and Spectroscopy, ed. D. L.
  24. [13] M. J.
  25. [131] P. L. Stiles, J. A. Dieringer, N. C. Shah and R. P. Van Duyne, Annual Review of Analytical Chemistry, 2008, 1, 601{626. doi
  26. [132] A. Kudelski, Surface Science, 2009, 603, 1328{1334. doi
  27. [133] T. Ikeshoji, Y. Ono and T. Mizuno, Appl. Opt., 1973, 12, 2236{2237. doi
  28. [134] M. Fujihira and T. Osa, Journal of the American Chemical Society, 1976, 98, 7850{7851. doi
  29. [135] T. Takenaka and K. Yamasaki, Journal of Colloid and Interface Science, 1980, 78, 37{43. doi
  30. [136] T. Takenaka and H. Fukuzaki, Journal of Raman Spectroscopy, 1979, 8, 151{ 154. doi
  31. [137] T. Takenaka and T. Nakanaga, The Journal of Physical Chemistry, 1976, 80, 475{480. doi
  32. [138] T. Nakanaga and T. Takenaka, The Journal of Physical Chemistry, 1977, 81, 645{649. doi
  33. [140] R. Iwamoto, M. Miya, K. Ohta and S. Mima, Journal of Chemical Physics, 1981, 74, 4780{4790.
  34. [141] R. Iwamoto, K. Ohta, M. Miya and S. Mima, Applied Spectroscopy, 1981, 35, 584{587. doi
  35. [142] W. H olzer, O. Schr oter and A. Richter, Journal of Molecular Structure, 1990, 217, 253{264.
  36. [143] W. Carius and O. Schr oter, physica status solidi (a), 1980, 59, K115{K118. doi
  37. [144] W. Carius, W. H olzer and O. Schr oter, Die Makromolekulare Chemie, Rapid Communications, 1983, 4, 469{470. doi
  38. [145] G. Mattei, B. Fornari and M. Pagannone, Solid State Communications, 1980, 36, 309{312. doi
  39. [146] M. Ohsawa, K. Hashima and W. Su etaka, Applications of Surface Science, 1984, 20, 109{120.
  40. [147] L. D'Hooge and J. Vigoureux, Chemical Physics Letters, 1979, 65, 500{506. doi
  41. [148] Y. Levy, C. Imbert, J. Cipriani, S. Racine and R. Dupeyrat, Optics Communications, 1974, 11, 66{69. doi
  42. [149] J. F. Rabolt, N. E. Schlotter and J. D. Swalen, The Journal of Physical Chemistry, 1981, 85, 4141{4144. doi
  43. [150] J. S. Kanger, C. Otto, M. Slotboom and J. Greve, The Journal of Physical Chemistry, 1996, 100, 3288{3292. doi
  44. [151] T. Plowman, S. Saavedra and W. Reichert, Biomaterials, 1998, 19, 341{355. doi
  45. [152] E. V. Efremov, J. B. Buijs, C. Gooijer and F. Ariese, Applied Spectroscopy, 2007, 61, 571{578. doi
  46. [153] L. G. Tisinger and A. J. Sommer, Microscopy and Microanalysis, 2004, 10, 1318{1319. doi
  47. [154] C. A. Michaels, Journal of Raman Spectroscopy, 2010, 41, 1670{1677. doi
  48. [155] G. M. Lerman, A. Israel and A. Lewis, Applied Physics Letters, 2006, 89, 223122. doi
  49. [156] R. F. Tabor, J. Eastoe and P. Dowding, Langmuir, 2009, 25, 9785{9791. doi
  50. [157] G. W. Faris and R. A. Copeland, Appl. Opt., 1997, 36, 2686{2688. doi
  51. [158] M. O. Trulson and R. A. Mathies, The Journal of Chemical Physics, 1986, 84, 2068{2074. doi
  52. [159] W. K. Thompson, Trans. Faraday Soc., 1965, 61, 2635{2640. doi
  53. [161] M. L. Larsson, A. Holmgren and W. Forsling, Journal of Colloid and Interface Science, 2001, 242, 25{30. doi
  54. [162] Y. R. Shen, Nature, 1989, 337, 519{525. doi
  55. [163] C. D. Bain, J. Chem. Soc., Faraday Trans., 1995, 91, 1281{1296.
  56. [164] G. L. Richmond, Chemical Reviews, 2002, 102, 2693{2724. doi
  57. [165] Y. R. Shen and V. Ostroverkhov, Chemical Reviews, 2006, 106, 1140{1154. [166] H. C. Allen, N. N. Casillas-Ituarte, M. R. Sierra-Hernandez, X. Chen and C. Y.
  58. [167] F. M. Geiger, Annual Review of Physical Chemistry, 2009, 60, 61{83. doi
  59. [168] Z. S. Nickolov, J. C. Earnshaw and J. J. McGarvey, Colloids and Surfaces A: Physicochemical and Engineering Aspects, 1993, 76, 41{49. doi
  60. [169] Z. S. Nickolov, J. C. Earnshaw and J. J. McGarvey, Journal of Raman Spectroscopy, 1993, 24, 411{416. doi
  61. [170] H. Yui, H. Fujiwara and T. Sawada, Chemical Physics Letters, 2002, 360, 53{58. doi
  62. [171] J. S. Kanger, C. Otto and J. Greve, The Journal of Physical Chemistry, 1996, 100, 16293{16297. doi
  63. [172] G. I. Stegeman, R. Fortenberry, C. Karagule, R. Moshrefzadeh, W. M. Hetherington, III, N. E. Van Wyck and J. E. Sipe, Opt. Lett., 1983, 8, 295{297. doi
  64. [173] W. M. K. P. Wijekoon, Z. Z. Ho and W. M. Hetherington, J. Chem. Soc., Faraday Trans., 1993, 89, 1067{1069. doi
  65. [174] E. Okamura, J. Umemura and T. Takenaka, Journal of Raman Spectroscopy, 1991, 22, 759{762. doi
  66. [175] C. Lee and C. D. Bain, Biochimica et Biophysica Acta (BBA) - Biomembranes, 2005, 1711, 59{71. doi
  67. [176] C. Lee, H. Wacklin and C. D. Bain, Soft Matter, 2009, 5, 568{575. doi
  68. [177] D. J. Neivandt, M. L. Gee, M. L. Hair and C. P. Tripp, The Journal of Physical Chemistry B, 1998, 102, 5107{5114. doi
  69. [178] T. Morikawa, E. Shirai, J. Tanno, H. Takanashi, A. Yasuda and K. Itoh, Molecular Crystals and Liquid Crystals Science and Technology. Section A. Molecular Crystals and Liquid Crystals, 1998, 312, 69{94. doi
  70. [179] I. Kaplan-Ashiri, E. J. Titus and K. A. Willets, ACS Nano, 2011, 5, 1033{1041. doi
  71. [180] A. J. McQuillan, Advanced Materials, 2001, 13, 1034{1038. doi
  72. [182] S. Yamamoto and H. Watarai, The Journal of Physical Chemistry C, 2008, 112, 12417{12424. doi
  73. [183] T. Takenaka, Chemical Physics Letters, 1978, 55, 515{518. doi
  74. [184] J. Perera and G. Stevens, Analytical and Bioanalytical Chemistry, 2009, 395, 1019{1032. doi
  75. [185] J. P. R. Day and C. D. Bain, Phys. Rev. E, 2007, 76, 041601.
  76. [186] R. A. Dluhy, N. A. Wright and P. R. Griths, Applied Spectroscopy, 1988, 42, 138{141.
  77. [187] R. A. Campbell, S. R. W. Parker, J. P. R. Day and C. D. Bain, Langmuir, 2004, 20, 8740{8753. doi
  78. [188] G. R. Bell, C. D. Bain and R. N. Ward, J. Chem. Soc., Faraday Trans., 1996, 92, 515{523. doi
  79. [189] T. Kawai, J. Umemura and T. Takenaka, Chemical Physics Letters, 1989, 162, 243{247. doi
  80. [190] D. A. Beattie, R. Fraenkel, S. A. Winget, A. Petersen and C. D. Bain, The Journal of Physical Chemistry B, 2006, 110, 2278{2292. doi
  81. [191] P. Cann and H. Spikes, Tribology Letters, 2005, 19, 289{297. doi
  82. [192] R. Fraenkel, G. E. Butterworth and C. D. Bain, Journal of the American Chemical Society, 1998, 120, 203{204. doi
  83. [193] D. A. Beattie, S. Winget and C. D. Bain, Tribology Letters, 2007, 27, 159{167. doi
  84. [194] S. Webster, D. N. Batchelder and D. A. Smith, Applied Physics Letters, 1998, 72, 1478{1480. doi
  85. [195] J. Grausem, B. Humbert, M. Spajer, D. Courjon, A. Burneau and J. Oswalt, Journal of Raman Spectroscopy, 1999, 30, 833{840. doi
  86. [196] G. Mattei, M. Pagannone, B. Fornari and L. Mattioli, Solid State Communications, 1982, 44, 1495{1498. doi
  87. [197] Y. Q. Sheng, E. Recknagel, A. Weidinger, Z. G. Gu, Z. Y. Lai and Z. C. Zhuang, physica status solidi (b), 1988, 145, 151{156. doi
  88. [198] F. Ishizaki and M. Kim, Japanese Journal of Applied Physics, 2008, 47, 1621{ 1627. doi
  89. [199] P. R. Greene and C. D. Bain, Spectroscopy Europe, 2004, Aug/Sep, 8{15.
  90. [20] S. Paria and K. C.
  91. [200] P. R. Greene and C. D. Bain, Colloids and Surfaces B: Biointerfaces, 2005, 45, 174{180. doi
  92. [201] N. H. Fontaine and T. E. Furtak, J. Opt. Soc. Am. B, 1997, 14, 3342{3348. doi
  93. [203] P. C. Hansen, Inverse Problems, 1992, 8, 849. doi
  94. [204] P. C. Hansen, SIAM Review, 1992, 34, 561{580. doi
  95. [205] N. H. Fontaine and T. E. Furtak, Phys. Rev. B, 1998, 57, 3807{3810. doi
  96. [206] K. J. McKee and E. A. Smith, Review of Scientific Instruments, 2010, 81, 043106. doi
  97. [207] K. L. A. Chan and S. G. Kazarian, Applied Spectroscopy, January 2007, 61, 48{54.
  98. [208] T. Frosch, K. L. A. Chan, H. C. Wong, J. T. Cabral and S. G. Kazarian, Langmuir, 2010, 26, 19027{19032. doi
  99. [209] L. J. Fina, Applied Spectroscopy Reviews, 1994, 29, 309{365. doi
  100. [210] L. J. Fina and G. Chen, Vibrational Spectroscopy, 1991, 1, 353{361. doi
  101. [211] R. A. Shick, J. L. Koenig and H. Ishida, Applied Spectroscopy, 1 August 1993, 47, 1237{1244. doi
  102. [212] R. A. Shick, J. L. Koenig and H. Ishida, Applied Spectroscopy, 1 August 1996, 50, 1082{1088. doi
  103. [213] N. J. Everall, Applied Spectroscopy, 2009, 63, 245A{262A.
  104. [214] N. J. Everall, Analyst, 2010, 135, 2512{2522. [215] Renishaw Raman Imaging Microscope WiRE V1.2 users’ notes, Issue 1.0. [216] S. Maussang, Renishaw plc, private communication with Eric Tyrode.
  105. [217] R. G. Snyder, H. L. Strauss and C. A. Elliger, The Journal of Physical Chemistry, 1982, 86, 5145{5150. doi
  106. [218] T. J. O'Leary and I. W. Levin, The Journal of Physical Chemistry, 1984, 88, 1790{1796. doi
  107. [219] E. R. Malinowski, Factor Analysis in Chemistry, John Wiley & Sons, 2nd edn., 1991.
  108. [220] D. R. Mason and E. L. Piret, Industrial & Engineering Chemistry, 1950, 42, 817{825. doi
  109. [221] N. G. Anderson, Organic Process Research & Development, 2001, 5, 613{621. doi
  110. [222] E. Santacesaria and S. Carr, Applied Catalysis, 1983, 5, 345{358. doi
  111. [223] I. Aizpurua and M. J. Barandiaran, Polymer, 1999, 40, 4105{4115. doi
  112. [224] T. F. Svitova, M. J. Wetherbee and C. J. Radke, Journal of Colloid and Interface Science, 2003, 261, 170 { 179. doi
  113. [226] V. B. Fainerman, M. E. Leser, M. Michel, E. H. Lucassen-Reynders and R. Miller, The Journal of Physical Chemistry B, 2005, 109, 9672{9677. doi
  114. [227] H. Schlichting, Boundary-Layer Theory, McGraw-Hill Inc., 1979.
  115. [228] R. L. Panton, in Incompressible Flow, John Wiley & Sons, Inc., 2nd edn., 1996, pp. 282{289.
  116. [229] N. Fr ossling, Lunds Univ. ˚ Arsskr. N. F. Afd. 2, 1940, 35, No. 4.
  117. [230] J. Melville, N. Simjee, P. R. Unwin, B. A. Coles and R. G. Compton, Journal of Physical Chemistry B, 2002, 106, 2690{2698. doi
  118. [231] M. D. Deshpande and R. N. Vaishnav, J. Fluid Mech., 1982, 114, 213{236. doi
  119. [232] J. V. Macpherson, M. A. Beeston and P. R. Unwin, J. Chem. Soc., Faraday Trans., 1995, 91, 899{904.
  120. [233] M. Abramowitz and I. A. Stegun, Handbook of Mathematical Functions, Dover Publications, Inc., 1972.
  121. [234] J. Alden, Ph.D. thesis, Oxford University, 1998.
  122. [235] M. B. Abbott and B. D. R., Computational Fluid Dynamics: An Introduction for Engineers, Longman Scienti & Technical, 1989.
  123. [236] I. Langmuir, Journal of the American Chemical Society, 1916, 38, 2221{2295. doi
  124. [237] A. Frumkin, Zeitschrift f¨ ur Physik A Hadrons and Nuclei, 1926, 35, 792{802.
  125. [238] J. K. Ferri and K. J. Stebe, Journal of Colloid and Interface Science, 1999, 209, 1{9. doi
  126. [239] D. A. Woods, J. Petkov and C. D. Bain, The Journal of Physical Chemistry B, 2011, 115, 7341{7352. doi
  127. [240] A. Sadkowski, Journal of Electroanalytical Chemistry and Interfacial Electrochemistry, 1986, 208, 69{76. doi
  128. [241] M. J. Avena and L. K. Koopal, Environmental Science & Technology, 1999, 33, 2739{2744. doi
  129. [242] L. K. Koopal and M. J. Avena, Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2001, 192, 93{107. doi
  130. [243] C. F. Wertz and M. M. Santore, Langmuir, 2002, 18, 1190{1199. doi
  131. [244] A. Couzis and E. Gulari, in Adsorption from Aqueous Binary Surfactant Mixtures onto the Solid-Liquid Interface, American Chemical Society, 1992, ch. 25, pp. 354{365. doi
  132. [245] R. Thomas, Annual Review of Physical Chemistry, 2004, 55, 391{426. 248[246] G. Fragneto, J. R. Lu, D. C. McDermott, R. K. Thomas, A. R. Rennie, P. D.
  133. [247] J. Penfold, I. Tucker and R. K. Thomas, Langmuir, 2005, 21, 11757{11764. doi
  134. [248] H. Gharibi, S. Javadian, B. Sohrabi and R. Behjatmanesh, Journal of Colloid and Interface Science, 2005, 285, 351{359. doi
  135. [249] X. W. Fang, S. Zhao, S. Z. Mao, J. Y. Yu and Y. Du, Colloid Polym. Sci., 2003, 281, 455{560. doi
  136. [250] B. Lindman, M. C. Puyal, N. Kamenka, R. Rymden and P. Stilbs, The Journal of Physical Chemistry, 1984, 88, 5048{5057. doi
  137. [251] F. J. Trogus, R. S. Schechter and W. H. Wade, Journal of Colloid and Interface Science, 1979, 70, 293{305. doi
  138. [252] Q-Sense Instruments, http://www.q-sense.com/qcm_d_faq--33.asp, accessed Novemeber 2010.
  139. [253] S. Partyka, S. Zaini, M. Lindheimer and B. Brun, Colloids and Surfaces, 1984, 12, 255{270. doi
  140. [254] S. Paria, C. Manohar and K. C. Khilar, Industrial & Engineering Chemistry Research, 2005, 44, 3091{3098. doi
  141. [255] S. C. Biswas and D. K. Chattoraj, Journal of Colloid and Interface Science, 1998, 205, 12{20. doi
  142. [256] J. Penfold, E. J. Staples, I. Tucker and L. J. Thompson, Langmuir, 1997, 13, 6638{6643. doi
  143. [257] J. Penfold, E. J. Staples, I. Tucker and R. K. Thomas, Langmuir, 2000, 16, 8879{8883. doi
  144. [258] S. B. Velegol and R. D. Tilton, Langmuir, 2001, 17, 219{227. doi
  145. [259] H. Li and C. P. Tripp, The Journal of Physical Chemistry B, 2004, 108, 18318{ 18326. doi
  146. [260] A. H abich, G. G. Qiao and W. Ducker, Langmuir, 2010, 26, 13944{13953. doi
  147. [261] R. Wirz, T. B urgi and A. Baiker, Langmuir, 2003, 19, 785{792. doi
  148. [262] M. Bieri and T. B urgi, The Journal of Physical Chemistry B, 2005, 109, 10243{ 10250. doi
  149. [263] J. P. R. Day, R. A. Campbell, O. P. Russell and C. D. Bain, The Journal of Physical Chemistry C, 2007, 111, 8757{8774. doi
  150. [264] Z. Huang and T. Gu, Colloids and Surfaces, 28, 1987, 159{168. doi
  151. [265] D. C. McDermott, D. Kanelleas, R. K. Thomas, A. R. Rennie, S. K. Satija and C. F. Majkrzak, Langmuir, 1993, 9, 2404{2407. doi
  152. [267] C. C. Ruiz and J. Aguiar, Langmuir, 2000, 16, 7946{7953. doi
  153. [268] G. Despert and J. Oberdisse, Langmuir, 2003, 19, 7604{7610. doi
  154. [269] D. Lugo, J. Oberdisse, M. Karg, R. Schweins and G. H. Findenegg, Soft Matter, 2009, 5, 2928{2936. doi
  155. [270] J. Penfold, I. Tucker, J. Petkov and R. K. Thomas, Langmuir, 2007, 23, 8357{ 8364. doi
  156. [271] I. Tucker, J. Petkov, J. Penfold and R. K. Thomas, Langmuir, 2010, 36, 8036{ 8048. doi
  157. [272] S. Paria, C. Manohar and K. C. Khilar, Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2005, 252, 221{229. doi
  158. [273] S. Alila, S. Bou M. N. Belgacem and D. Beneventi, Langmuir, 2005, 21, 8106{8113. doi
  159. [274] E. Kontturi, P. C. Th une and J. W. H. Niemantsverdriet, Langmuir, 2003, 19, 5735{5741. doi
  160. [275] T. Mohan, R. Kargl, A. Doliska, A. Vesel, S. Kstler, V. Ribitsch and K. StanaKleinschek, Journal of Colloid and Interface Science, 2011, 358, 604{610. doi
  161. [276] M. Holmberg, J. Berg, S. Stemme, L. Odberg, J. Rasmusson and P. Claesson, Journal of Colloid and Interface Science, 1997, 186, 369{381. doi
  162. [277] S. M. Notley, J. Phys. Chem. B, 2009, 113, 13895{13897. doi
  163. [278] T. Tammelin, T. Saarinen, M. Osterberg and J. Laine, Cellulose, 2006, 13, 519{535. doi
  164. [279] E. Kontturi, T. Tammelin and M. Osterberg, Chem. Soc. Rev., 2006, 35, 1287{ 1304. doi
  165. [280] M. Schaub, G. Wenz, G. Wegner, A. Stein and D. Klemm, Advanced Materials, 1993, 5, 919{922. doi
  166. [281] C. Wegner, V. Buchholz, L. Odberg and S. Stemme, Advanced Materials, 1996, 8, 399{402. doi
  167. [282] C. Geroy, M. P. Labeau, K. Wong, B. Cabane and M. A. Cohen Stuart, Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2000, 172, 47{56. doi
  168. [283] R. D. Neuman, J. M. Berg and P. M. Claesson, Nordic Pulp & Paper Research Journal, 1993, 8, 96{104. doi
  169. [284] S. Gunnars, L. W agberg and M. A. Cohen Stuart, Cellulose, 2002, 9, 239{249. doi
  170. [286] E. Kontturi and A. Lankinen, Journal of the American Chemical Society, 2010, 132, 3678{3679. doi
  171. [287] P. Linse and P. M. Claesson, Macromolecules, 2009, 42, 6310{6318. doi
  172. [288] O. Teschke and E. F. de Souza, Langmuir, 2003, 19, 5357{5365. doi
  173. [289] J. C. Schulz and G. G. Warr, Langmuir, 2000, 16, 2995{2996. doi
  174. [290] F. P. Duval, R. Zana and G. G. Warr, Langmuir, 2006, 22, 1143{1149. doi
  175. [291] R. E. Lamont and W. A. Ducker, Journal of the American Chemical Society, 1998, 120, 7602{7607. doi
  176. [292] J.-F. Liu and W. A. Ducker, The Journal of Physical Chemistry B, 1999, 103, 8558{8567. doi
  177. [293] Y. L. Chen, S. Chen, C. Frank and J. Israelachvili, Journal of Colloid and Interface Science, 1992, 153, 244{265. doi
  178. [294] W. A. Ducker and E. J. Wanless, Langmuir, 1999, 15, 160{168. doi
  179. [295] S. Perkin, N. Kampf and J. Klein, The Journal of Physical Chemistry B, 2005, 109, 3832{3837. doi
  180. [296] W. A. Hayes and D. K. Schwartz, Langmuir, 1998, 14, 5913{5917. doi
  181. [297] M. Fujii, B. Li, K. Fukada, T. Kato and T. Seimiya, Langmuir, 1999, 15, 3689{ 3692. doi
  182. [298] J. M. Mellott, W. A. Hayes and D. K. Schwartz, Langmuir, 2004, 20, 2341{2348. doi
  183. [303] S. N. Singh, H. S. Bhatti and R. D. Singh, Spectrochimica Acta Part A: Molecular Spectroscopy, 1978, 34, 985{992. doi
  184. [304] G. E. Walrafen, M. S. Hokmabadi and W.-H. Yang, Journal of Chemical Physics, 1986, 85, 6964{6969. doi
  185. [305] P. Wydro and M. Paluch, Journal of Colloid and Interface Science, 2005, 286, 387{391. doi
  186. [306] A. J. Easteal, Aust. J. Chem., 1980, 33, 1667{75. doi
  187. [307] J. W. Thompson, T. J. Kaiser and J. W. Jorgenson, Journal of Chromatography A, 2006, 1134, 201{209. doi
  188. [309] H. T. French, The Journal of Chemical Thermodynamics, 1987, 19, 1155{1161. doi
  189. [31] A. de
  190. [310] J. Catalan, C. Diaz and F. Garcia-Blanco, Org. Biomol. Chem., 2003, 1, 575{ 580. 252 doi
  191. [39] P. Chandar, P. Somasundaran,
  192. [43] R. Atkin, V. S. J. Craig
  193. [45] R. Atkin, V. S. J. Craig, E. J. Wanless and S. Biggs, Journal
  194. [46] R. Atkin, V. S.
  195. [5]
  196. [53] S. C. Howard and V.
  197. [76]
  198. 0 500 1000 1500 2000 2500 3000 c o u n t s / s − 1 7.4 ◦ C 11.7
  199. 0.05 0.06 0.07 0.08 0.09 0.1 0 50 100 150 200 250 300 350 A d s o r b e d a m o u n t / a r b i t r a r y u n i t s time / s
  200. 0.06 -0.04 -0.02 0 0.02 0.04 0.06 0 200 400 600 800 1000 1200 1400 A d s o r b e d a m o u n t / a r b i t r a r y u n i t s
  201. 15,
  202. 181Chapter 7. Mica (a) 1-methylnaphthalene (b) 1-fluoronaphthalene (c) 1-bromonaphthalene Figure
  203. 182Chapter 7. Mica 0 2000 4000 6000 8000 10000 12000 14000 16000 18000 20000 0 500
  204. 1966,
  205. 1983, doi
  206. 1987,
  207. 1991,
  208. 1998, doi
  209. 1999, doi
  210. 2001,
  211. 2002, doi
  212. 2006,
  213. 2006.
  214. 2008, doi
  215. 208Appendix D. Verification of mass transport 0 200 400 600 800 1000 1200
  216. 23365{23372. doi
  217. 241[101] T. D abro
  218. 242[120] P. Atkins and J. de Paula, in Atkins’ Physical Chemistry, Oxford University Press, 7th edn., 2002, ch. 16. Spectroscopy 1: rotational and vibrational spectra.
  219. 243[139] R. Iwamoto, M. Miya, K. Ohta and S. Mima, Journal of the American Chemical Society, 1980, 102, 1212{1213. doi
  220. 244[160] A. E. Klingbeil, J. B. Jeries and R. K. Hanson, Journal of Quantitative Spectroscopy and Radiative Transfer, 2007, 107, 407 { 420. doi
  221. 245[181] K. Fujiwara and H. Watarai, Langmuir, 2003, 19, 2658{2664. doi
  222. 246[202] J. F. Power, Review of Scientific Instruments, 2002, 73, 4057{4141.
  223. 247[225] T. F. Svitova and C. J. Radke, Industrial & Engineering Chemistry Research, 2005, 44, 1129{1138. doi
  224. 249[266] O. A. Soboleva, A. A. Yaroslavtsev, G. A. Badun and B. D. Summ, Colloid Journal, 2004, 66, 470{476. doi
  225. 250[285] L.-E. Enarsson and L. W agberg, Biomacromolecules, 2009, 10, 134{141.
  226. 251[308] R. H. Stokes, The Journal of Chemical Thermodynamics, 1987, 19, 977{983. doi
  227. 6.3 Removal of -Si(CH3)3 from cellulose Throughout this section
  228. 89,
  229. 97, doi
  230. A.
  231. and
  232. and J. Lyklema, Langmuir, 2005, 21, 7768{7775. doi
  233. Atkins’
  234. B. doi
  235. Basu,
  236. Biggs,
  237. C. doi
  238. Chemistry doi
  239. Clark doi
  240. Colegate doi
  241. Compton doi
  242. Corsel, doi
  243. e % s e c o n d argument , s i n c e I t h i n k i t ’ s u s e f u l t o some v a r i e n t s % c o n v e r g = maximum v a l u e r e q u i r e d f o r c o n v e r g a n c e t o be r e a
  244. E.
  245. E. A. G.
  246. Eastoe,
  247. Faraday doi
  248. Figure 7.6 shows spectra for CTAB on mica, using 1-methylnaphthalene as
  249. G. H.
  250. G. Min and doi
  251. Gallagher and S. K. Satija, Langmuir, 1996, 12, 477{486. doi
  252. H.
  253. Hoboken,
  254. in
  255. Interface
  256. Interface Science, 1983, 91, 104{116. doi
  257. J.
  258. J. Craig, E. J. Wanless and S. Biggs, Advances in Colloid
  259. Journal doi
  260. K. doi
  261. Langmuir, doi
  262. M. Lee, E. A.
  263. Mixed doi
  264. of
  265. of Microscopy, 2006,
  266. om, P. Hansson, B.
  267. P.
  268. P. Goloub, L.
  269. Physical doi
  270. Quintero, Journal of Dispersion Science
  271. R. doi
  272. Rennie doi
  273. Rosen doi
  274. Rutland
  275. S.
  276. Surface
  277. T. doi
  278. Tang, Phys. Chem. Chem. Phys., 2009, 11, 5538{5549.
  279. Taylor and Y.-L. Wang, Academic Press, 1989, vol. 30, pp. 245{270.
  280. The
  281. The adsorption of a mixture of a 4mM mixture of SDS and sulfobetaine with respect to composition is shown in B.5(a). The data was analysed using the surfactant component shown in B.5(b); the spectrum
  282. Tilton, doi
  283. Tominaga, doi
  284. V. doi
  285. V. Subramanian and
  286. W. H. Briscoe, S.

To submit an update or takedown request for this paper, please submit an Update/Correction/Removal Request.