Location of Repository

Structural and magnetic characterisation of some mixed metal oxides and oxyhalides

By Deborah Ann Stephens


This thesis investigates the structural and physical effects of changing the ratio of Mn:Ga in the anion deficient perovskite, YSr\(_3\)Mn\(_{4-x}\)GaxO\(_{10.5}\). YSr\(_3\)Mn\(_{4-x}\)GaxO\(_{10.5}\) crystallises in the tetragonal space group I4/mmm, with lattice parameters a~7.64 Å and c~15.66 Å. Magnetic characterisation indicates that the material is antiferromagnetic overall, with ferromagnetic ordering in the [001] direction of the unit cell. Earlier work on the structural analogue, Y\(_{1.07}\)Sr\(_{2.93}\)Mn\(_{2.67}\)Ga\(_{1.33}\)O\(_{10.5}\), identified a magnetic peak in the neutron diffraction pattern that could not be fitted following refinement of NPD data. This work concluded that the extra peak was due to a small MnO impurity. The effects of oxidation and fluorination on the structural and physical properties of YSr\(_3\)Mn\(_{4-x}\)Ga\(_x\)O\(_{10.5}\) with various Mn:Ga ratios are investigated. The physical and structural effects of substituting Mn\(^{3+}\) or Co\(^{3+}\) for Fe\(^{3+}\) in the perovskite related material, Pb\(_4\)Fe\(_3\)O\(_8\)Cl, have been investigated using XRPD, NPD and magnetic susceptibility measurements. An earlier characterisation of Pb\(_8\)WO\(_{10}\)Cl\(_2\) suggested a deficit on all atom sites within the unit cell. This work suggests a different structure with an intact cation and main oxygen sub-lattice. The site of an additional oxygen was established linked to tungsten. Pb\(_8\)WO\(_{10}\)Cl\(_2\) crystallises in space group I4/mmm, with a = 3.9846(2) and c = 22.690(2) Å

Topics: TP Chemical technology, QD Chemistry
Year: 2011
OAI identifier: oai:etheses.bham.ac.uk:1512

Suggested articles



  1. (1982). Chemica Scripta , 19 ,
  2. (2001). o u r n a l of Materi a l s Chemis t r y,

To submit an update or takedown request for this paper, please submit an Update/Correction/Removal Request.