Article thumbnail

Predicting Biodegradation Products and Pathways: A Hybrid Knowledge-Based and Machine Learning Based Approach

By Kathrin Fenner, Lynda Ellis and Larry Wackett

Abstract

Motivation Current methods for the prediction of biodegradation products and pathways of organic environmental pollutants either do not take into account domain knowledge or do not provide probability estimates. In this paper, we propose a hybrid knowledge-based and machine learning based approach to overcome these limitations in the context of the University of Minnesota Pathway Prediction System (UM-PPS). The proposed solution performs relative reasoning in a machine learning framework, and obtains one probability estimate for each biotransformation rule of the system. As the application of a rule then depends on a threshold for the probability estimate, the trade-off between recall (sensitivity) and precision (selectivity) can be addressed and leveraged in practice. Results Results from leave-one-out cross-validation show that a recall and precision of approximately 0.8 can be achieved for a subset of 13 transformation rules. Therefore, it is possible to optimize precision without compromising recall. We are currently integrating the results into an experimental version of the UM-PPS server. Availability The program is freely available on the web a

Year: 2010
OAI identifier: oai:CiteSeerX.psu:10.1.1.964.3332
Provided by: CiteSeerX
Download PDF:
Sorry, we are unable to provide the full text but you may find it at the following location(s):
  • http://bioinformatics.oxfordjo... (external link)
  • http://bioinformatics.oxfordjo... (external link)
  • http://citeseerx.ist.psu.edu/v... (external link)
  • Suggested articles


    To submit an update or takedown request for this paper, please submit an Update/Correction/Removal Request.