Location of Repository

Non-invasive, quantitative analysis of drug mixtures in containers using spatially offset Raman spectroscopy (SORS) and multivariate statistical analysis

By William J. Olds, Shankaran Sundarajoo, Mark Selby, Biju Cletus, Peter M. Fredericks and Emad L. Izake


In this paper, spatially offset Raman spectroscopy (SORS) is demonstrated for non-invasively investigating the composition of drug mixtures inside an opaque plastic container. The mixtures consisted of three components including a target drug (acetaminophen or phenylephrine hydrochloride) and two diluents (glucose and caffeine). The target drug concentrations ranged from 5% to 100%. After conducting SORS analysis to ascertain the Raman spectra of the concealed mixtures, principal component analysis (PCA) was performed on the SORS spectra to reveal trends within the data. Partial least squares (PLS) regression was used to construct models that predicted the concentration of each target drug, in the presence of the other two diluents. The PLS models were able to predict the concentration of acetaminophen in the validation samples with a root-mean-square error of prediction (RMSEP) of 3.8% and the concentration of phenylephrine hydrochloride with an RMSEP of 4.6%. This work demonstrates the potential of SORS, used in conjunction with multivariate statistical techniques, to perform non-invasive, quantitative analysis on mixtures inside opaque containers. This has applications for pharmaceutical analysis, such as monitoring the degradation of pharmaceutical products on the shelf, in forensic investigations of counterfeit drugs, and for the analysis of illicit drug mixtures which may contain multiple components

Topics: 030000 CHEMICAL SCIENCE, 030100 ANALYTICAL CHEMISTRY, 030606 Structural Chemistry and Spectroscopy, Raman spectroscopy, Chemometrics, Narcotic mixtures, Pharmaceutical analysis, Quantitative analysis, Spatially offset Raman spectroscopy, Forensic analysis, SORS, Non-contact analysis
Publisher: Society for Applied Spectroscopy
Year: 2012
DOI identifier: 10.1366/11-06554
OAI identifier: oai:eprints.qut.edu.au:48615

Suggested articles


To submit an update or takedown request for this paper, please submit an Update/Correction/Removal Request.