Article thumbnail

Using Web Search Logs to Identify Query Classification Terms

By Isak Taksa, Sarah Zelikovitz and Amanda Spink

Abstract

Purpose – The work presented in this paper aims to provide an approach to classifying web logs by personal properties of users. Design/methodology/approach – The authors describe an iterative system that begins with a small set of manually labeled terms, which are used to label queries from the log. A set of background knowledge related to these labeled queries is acquired by combining web search results on these queries. This background set is used to obtain many terms that are related to the classification task. The system then ranks each of the related terms, choosing those that most fit the personal properties of the users. These terms are then used to begin the next iteration. Findings – The authors identify the difficulties of classifying web logs, by approaching this problem from a machine learning perspective. By applying the approach developed, the authors are able to show that many queries in a large query log can be classified. Research limitations/implications – Testing results in this type of classification work is difficult, as the true personal properties of web users are unknown. Evaluation of the classification results in terms of the comparison of classified queries to well known age-related sites is a direction that is currently being exploring. Practical implications – This research is background work that can be incorporated in search engines or other web-based applications, to help marketing companies and advertisers. Originality/value – This research enhances the current state of knowledge in short-text classification and query log learning. Classification schemes, Computer networks, Information retrieval, Man-machine systems, User interface

Topics: Classification Schemes, Computer Networks, Information Retrieval, Man-Machine Systems, User Interfaces
Publisher: 'Emerald'
Year: 2007
DOI identifier: 10.1108/17440080710848107
OAI identifier: oai:eprints.qut.edu.au:47872
Sorry, our data provider has not provided any external links therefore we are unable to provide a link to the full text.

To submit an update or takedown request for this paper, please submit an Update/Correction/Removal Request.

Suggested articles