Skip to main content
Article thumbnail
Location of Repository

Osteoarthritic cartilage chondrocytes alter subchondral bone osteoblast\ud differentiation via MAPK signalling pathway involving ERK1/2

By Indira Prasadam, Thor Friis, Wei Shi, Stijn van Gennip, Ross Crawford and Yin Xiao

Abstract

Osteoarthritic subchondral bone is characterized by abnormal bone density and enhanced production of\ud bone turnover markers, an indication of osteoblast dysfunction. Several studies have proposed that\ud pathological changes in articular cartilage influence the subchondral bone changes, which are typical of the\ud progression of osteoarthritis; however, direct evidence of this has yet to be reported. The aim of the present\ud study was to investigate what effects articular cartilage cells, isolated from normal and osteoarthritic joints,\ud may have on the subchondral bone osteoblast phenotype, and also the potential involvement of the mitogen\ud activated protein kinase (MAPK) signalling pathway during this process. Our results suggest that\ud chondrocytes isolated from a normal joint inhibited osteoblast differentiation, whereas chondrocytes\ud isolated from an osteoarthritic joint enhanced osteoblast differentiation, both via a direct and indirect cell\ud interaction mechanisms. Furthermore, the interaction of subchondral bone osteoblasts with osteoarthritic\ud chondrocyte conditioned media appeared to significantly activate ERK1/2 phosphorylation. On the other\ud hand, conditioned media from normal articular chondrocytes did not affect ERK1/2 phosphorylation.\ud Inhibition of the MAPK–ERK1/2 pathways reversed the phenotype changes of subchondral bone osteoblast,\ud which would otherwise be induced by the conditioned media from osteoarthritic chondrocytes. In\ud conclusion, our findings provide evidence that osteoarthritic chondrocytes affect subchondral bone\ud osteoblast metabolism via an ERK1/2 dependent pathway

Topics: 110300 CLINICAL SCIENCES, 060100 BIOCHEMISTRY AND CELL BIOLOGY, Osteoarthritis, Chondrocyte, Osteoblast, Cell interaction, Differentiation, Mineralization, MAPK
Publisher: Elsevier Inc.
Year: 2010
DOI identifier: 10.1016/j.bone.2009.10.014
OAI identifier: oai:eprints.qut.edu.au:31507
Download PDF:
Sorry, we are unable to provide the full text but you may find it at the following location(s):
  • https://eprints.qut.edu.au/315... (external link)
  • Suggested articles


    To submit an update or takedown request for this paper, please submit an Update/Correction/Removal Request.