Dark-adapted rod suppression of cone flicker detection: Evaluation of receptoral and postreceptoral interactions

Abstract

Dark-adapted rods in the area surrounding a luminance-modulated field can suppress flicker detection. However, the characteristics of the interaction between rods and each of the cone types are unclear. To address this issue, the effect that dark-adapted rods have on specific classes of receptoral and postreceptoral signals was determined by measuring the critical fusion frequencies (CFF) for receptoral L-, M-, and S-cone and postreceptoral luminance ([L+M+S] and [L+M+S+Rod]) and chromatic ([L/L+M]) signals in the presence of different levels of surrounding rod activity. Stimuli were generated with a two-channel photostimulator that has four primaries for a central field and four primaries for the surround, allowing independent control of rod and cone excitation. Measurements were made either with adaptation to the stimulus field after dark adaptation or during a brief period following light adaptation. The results show that dark-adapted rods maximally suppressed the CFF by ~6 Hz for L-cone, M-cone, and luminance modulation. Dark-adapted rods, however, did not significantly alter the S-cone CFF. The [L/L+M] postreceptoral CFF was slightly suppressed at higher surround illuminances, that is, higher than surround luminances resulting in suppression for L-cone, M-cone, or luminance modulation. We conclude that rod-cone interactions in flicker detection occurred strongly in the magnocellular pathway

Similar works

Full text

thumbnail-image

Queensland University of Technology ePrints Archive

redirect
Last time updated on 02/07/2013

Having an issue?

Is data on this page outdated, violates copyrights or anything else? Report the problem now and we will take corresponding actions after reviewing your request.