Skip to main content
Article thumbnail
Location of Repository

Solvable complemented Lie algebras.

By David A. Towers


In this paper a characterisation is given of solvable complemented Lie algebras. They decompose as a direct sum of abelian subalgebras and their ideals relate nicely to this decomposition. The class of such algebras is shown to be a formation whose residual is the ideal closure of the prefrattini subalgebras

Topics: QA Mathematics
Year: 2012
DOI identifier: 10.1090/S0002-9939-2012-11244-4
OAI identifier:
Provided by: Lancaster E-Prints

Suggested articles


  1. (1973). A Frattini theory for algebras’, doi
  2. (1972). Abstract Lie algebras’.
  3. (1953). Caratterizzazione dei gruppi risolubili d’ordine finito complementati’,
  4. Complements of intervals and prefrattini subalgebras of solvable Lie doi
  5. (2007). Elementary Lie Algebras and Lie A-algebras’, doi
  6. (1973). Elementary Lie algebras’, doi
  7. (1980). On complemented Lie algebras’, doi
  8. (1968). On the theory of soluble Lie algebras’, doi
  9. Solvable Lie A-algebras’, doi
  10. (1976). The Prefrattini Residual’, doi

To submit an update or takedown request for this paper, please submit an Update/Correction/Removal Request.