Abstract

The consequences of increasing atmospheric carbon dioxide for long-term adaptation of forest ecosystems remain uncertain, with virtually no studies undertaken at the genetic level. A global analysis using cDNA microarrays was conducted following 6 yr exposure of Populus × euramericana (clone I-214) to elevated [CO2] in a FACE (free-air CO2 enrichment) experiment.• Gene expression was sensitive to elevated [CO2] but the response depended on the developmental age of the leaves, and < 50 transcripts differed significantly between different CO2 environments. For young leaves most differentially expressed genes were upregulated in elevated [CO2], while in semimature leaves most were downregulated in elevated [CO2].• For transcripts related only to the small subunit of Rubisco, upregulation in LPI 3 and downregulation in LPI 6 leaves in elevated CO2 was confirmed by anova. Similar patterns of gene expression for young leaves were also confirmed independently across year 3 and year 6 microarray data, and using real-time RT–PCR.• This study provides the first clues to the long-term genetic expression changes that may occur during long-term plant response to elevated CO2

    Similar works

    Full text

    thumbnail-image

    Central Archive at the University of Reading

    redirect
    Last time updated on 01/07/2012

    Having an issue?

    Is data on this page outdated, violates copyrights or anything else? Report the problem now and we will take corresponding actions after reviewing your request.