Skip to main content
Article thumbnail
Location of Repository

Excited states of nitro-polypyridine metal complexes and their ultrafast decay. Time-resolved IR absorption, spectroelectrochemistry, and TD-DFT calculations of fac-[Re(Cl)(CO)3(5-Nitro-1,10-phenanthroline)]

By Anders Gabrielsson, Pavel Matousek, Michael Towrie, F. Hartl, Stanislav Záliš and A. Vlcek

Abstract

The lowest absorption band of fac-[Re(Cl)(CO)(3)(5-NO2-phen)] encompasses two close-lying MLCT transitions. The lower one is directed to LUMO, which is heavily localized on the NO2 group. The UV-vis absorption spectrum is well accounted for by TD-DFT (G03/PBEPBE1/CPCM), provided that the solvent, MeCN, is included in the calculations. Near-UV excitation of fac-[Re(Cl)(CO)(3)(5-NO2-phen)] populates a triplet metal to ligand charge-transfer excited state, (MLCT)-M-3, that was characterized by picosecond time-resolved IR spectroscopy. Large positive shifts of the v(CO) bands upon excitation (+70 cm(-1) for the A'(1) band) signify a very large charge separation between the Re(Cl)(CO)3 unit and the 5-NO2-phen ligand. Details of the excited-state character are revealed by TD-DFT calculated changes of electron density distribution. Experimental excited-state v(CO) wavenumbers agree well with those calculated by DFT. The (MLCT)-M-3 state decays with a ca. 10 ps lifetime (in MeCN) into another transient species, that was identified by TRIR and TD-DFT calculations as an intraligand (3)n pi* excited state, whereby the electron density is excited from the NO2 oxygen lone pairs to the pi* system of 5-NO2-phen. This state is short-lived, decaying to the ground state with a similar to 30 ps lifetime. The presence of an n pi* state seems to be the main factor responsible for the lack of emission and the very short lifetimes of 3 MLCT states seen in all d(6)-metal complexes of nitro-polypyridyl ligands. Localization of the excited electron density in the lowest (MLCT)-M-3 states parallels localization of the extra electron in the reduced state that is characterized by a very small negative shift of the v(CO) IR bands (-6 cm(-1) for A'(1)) but a large downward shift of the v(s)(NO2) IR band. The Re-Cl bond is unusually stable toward reduction, whereas the Cl ligand is readily substituted upon oxidation

Publisher: American Chemical Society
Year: 2005
OAI identifier: oai:centaur.reading.ac.uk:17286
Download PDF:
Sorry, we are unable to provide the full text but you may find it at the following location(s):
  • http://dx.doi.org/10.1021/jp05... (external link)
  • http://www.reading.ac.uk/chemi... (external link)
  • Suggested articles


    To submit an update or takedown request for this paper, please submit an Update/Correction/Removal Request.