Glutathione-dependent pathways of refolding of RNase T-1 by oxidation and disulfide isomerization: Catalysis by protein disulfide isomerase

Abstract

Protein folding, associated with oxidation and isomerization of disulfide bonds, was studied using reduced and denatured RNase T-1 (rd-RNase T-1) and mixed disulfide between glutathione and reduced RNase T-1 (GS-RNase T-1) as starting materials. Folding was initiated by addition of free glutathione (GSH + GSSG) and was monitored by electrospray mass spectrometry (ES-MS) time-course analysis. This permitted both the identification and quantitation of the population of intermediates present during the refolding process. Refolding experiments were performed in the presence of different absolute concentrations of glutathione species while keeping the redox potential fixed, in order to evaluate the effect of the glutathione concentration on the distribution of the refolding intermediates. All the analyses indicate a pathway of sequential reactions in the formation of native RNase T-1 which occurs via the reiteration of two steps: (i) formation of a species containing both mixed disulfides with glutathione and free protein thiols, and (ii) formation of an intramolecular disulfide via thiol-disulfide interchange reaction between them. Refolding of rd-RNase T-1 and GS-RNase T-1 was also performed in the presence of protein disulfide isomerase (PDI). Addition of PDI led to a catalysis of each individual reaction of the entire process without altering the refolding pathway. Refolding reactions carried out at different absolute concentrations of glutathione proved that GSH and/or GSSG participate directly in the reaction catalyzed by PDI. On the basis of these experiments and previous results on the refolding of RNase A [Torella, C., Ruoppolo, M., Marine, G., & Pucci, P. (1994) FEES Lett. 352, 301-306], a hypothesis of a general pathway for folding of S-S containing proteins is proposed

Similar works

Full text

thumbnail-image

Kent Academic Repository

redirect
Last time updated on 06/06/2013

This paper was published in Kent Academic Repository.

Having an issue?

Is data on this page outdated, violates copyrights or anything else? Report the problem now and we will take corresponding actions after reviewing your request.