Article thumbnail
Location of Repository

Performance of a 16.6 Meter Diameter Modified Ringsail Parachute in a Simulated Martian Environment

By Allen B. Henning, Lucille C. Coltrane and Charles H. Whitlock


Inflation, drag, and stability characteristics of a 54.5 -foot nominal-diameter (16.6-meter) modified ringsail parachute deployed in the wake of a 15-foot-diameter (4.6-meter) spacecraft traveling at a Mach number of 1.6 and a dynamic pressure equal to 11.6 psf (555 N/m(exp 2)) were obtained from the third balloon-launched flight test of the Planetary Entry Parachute Program. After deployment, the parachute inflated rapidly to a full condition, partially collapsed, and reinflated to a stable configuration. After reinflation, an average drag coefficient near 0.6 based on nominal surface area was obtained. During descent, an aerodynamic trim angle was observed in a plane near several torn sails. Amplitude of the trim was approximately 15 degrees and oscillation about trim was less than 11 degrees

Topics: Aerodynamics
Year: 1968
OAI identifier:
Sorry, our data provider has not provided any external links therefore we are unable to provide a link to the full text.

Suggested articles

To submit an update or takedown request for this paper, please submit an Update/Correction/Removal Request.