Article thumbnail

35 GHz Measurements of CO2 Crystals for Simulating Observations of the Martian Polar Caps

By J. L. Foster, A. B. Tait, J. S. Barton, D. K. Hall and A. T. C. Chang

Abstract

In order to learn more about the Martian polar caps, it is important to compare and contrast the behavior of both frozen H2O and CO2 in different parts of the electromagnetic spectrum. Relatively little attention has been given, thus far, to observing the thermal microwave part of the spectrum. In this experiment, passive microwave radiation emanating from within a 33 cm snowpack was measured with a 35 GHz hand-held radiometer, and in addition to the natural snow measurements, the radiometer was used to measure the microwave emission and scattering from layers of manufactured CO2 (dry ice). A 1 m x 2 m plate of aluminum sheet metal was positioned beneath the natural snow so that microwave emissions from the underlying soil layers would be minimized. Compared to the natural snow crystals, results for the dry ice layers exhibit lower' microwave brightness temperatures for similar thicknesses, regardless of the incidence angle of the radiometer. For example, at 50 degree H (horizontal polarization) and with a covering of 21 cm of snow and 18 cm of dry ice, the brightness temperatures were 150 K and 76 K, respectively. When the snow depth was 33 cm, the brightness temperature was 144 K, and when the total thickness of the dry ice was 27 cm, the brightness temperature was 86 K. The lower brightness temperatures are due to a combination of the lower physical temperature and the larger crystal sizes of the commercial CO2 Crystals compared to the snow crystals. As the crystal size approaches the size of the microwave wavelength, it scatters microwave radiation more effectively, thus lowering the brightness temperature. The dry ice crystals in this experiment were about an order of magnitude larger than the snow crystals and three orders of magnitude larger than the CO2 Crystals produced in the cold stage of a scanning electron microscope. Spreading soil, approximately 2 mm in thickness, on the dry ice appeared to have no effect on the brightness temperatures

Topics: Meteorology and Climatology
Year: 1998
OAI identifier: oai:casi.ntrs.nasa.gov:19990044011

To submit an update or takedown request for this paper, please submit an Update/Correction/Removal Request.

Suggested articles