Research Article Comparison of Different EHG Feature Selection Methods for the Detection of Preterm Labor

Abstract

Copyright © 2013 D. Alamedine et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. Numerous types of linear and nonlinear features have been extracted from the electrohysterogram (EHG) in order to classify labor and pregnancy contractions. As a result, the number of available features is now very large. The goal of this study is to reduce the number of features by selecting only the relevant ones which are useful for solving the classification problem. This paper presents threemethods for feature subset selection that can be applied to choose the best subsets for classifying labor and pregnancy contractions: an algorithm using the Jeffrey divergence (JD) distance, a sequential forward selection (SFS) algorithm, and a binary particle swarm optimization (BPSO) algorithm. The two last methods are based on a classifier and were tested with three types of classifiers. These methods have allowed us to identify common features which are relevant for contraction classification. 1

Similar works

Full text

thumbnail-image
oaioai:CiteSeerX.psu:10.1...Last time updated on 10/30/2017

This paper was published in CiteSeerX.

Having an issue?

Is data on this page outdated, violates copyrights or anything else? Report the problem now and we will take corresponding actions after reviewing your request.