Asymmetric N-Cadherin Expression Results in Synapse Dysfunction, Synapse Elimination, and Axon Retraction in Cultured Mouse Neurons


Synapse elimination and pruning of axon collaterals are crucial developmental events in the refinement of neuronal circuits. While a control of synapse formation by adhesion molecules is well established, the involvement of adhesion molecules in developmental synapse loss is poorly characterized. To investigate the consequences of mis-match expression of a homophilic synaptic adhesion molecule, we analysed an asymmetric, exclusively postsynaptic expression of N-cadherin. This was induced by transfecting individual neurons in cultures of N-cadherin knockout mouse neurons with a N-cadherin expression vector. 2 days after transfection, patch-clamp analysis of AMPA receptor-mediated miniature postsynaptic currents revealed an impaired synaptic function without a reduction in the number of presynaptic vesicle clusters. Long-term asymmetric expression of N-cadherin for 8 days subsequently led to synapse elimination as indicated by a loss of colocalization of presynaptic vesicles and postsynaptic PSD95 protein. We further studied long-term asymmetric N-cadherin expression by conditional, Cre-induced knockout of N-cadherin in individual neurons in cultures of N-cadherin expressing cortical mouse neurons. This resulted in a strong retraction of axonal processes in individual neurons that lacked N-cadherin protein. Moreover, an in vivo asymmetric expression of N-cadherin in the developmentally transient cortico-tectal projection was indicated by in-situ hybridization with layer V neurons lacking N-cadherin expression. Thus, mis-match expression of N

Similar works

Full text

oai:CiteSeerX.psu: time updated on 10/30/2017

This paper was published in CiteSeerX.

Having an issue?

Is data on this page outdated, violates copyrights or anything else? Report the problem now and we will take corresponding actions after reviewing your request.