Dedicated to Herb Wilf on the occasion of his 80th birthday Abstract. We define a de Bruijn process with parameters n and L as a certain continuous-time Markov chain on the de Bruijn graph with words of length L over an n-letter alphabet as vertices. We determine explicitly its steady state distribution and its characteristic polynomial, which turns out to decompose into linear factors. In addition, we examine the stationary state of two specializations in detail. In the first one, the de Bruijn-Bernoulli process, this is a product measure. In the second one, the Skin-deep de Bruin process, the distribution has constant density but nontrivial correlation functions. The two point correlation function is determined using generating function techniques. 1

Similar works

Full text

oaioai:CiteSeerX.psu:10.1...Last time updated on 10/30/2017

This paper was published in CiteSeerX.

Having an issue?

Is data on this page outdated, violates copyrights or anything else? Report the problem now and we will take corresponding actions after reviewing your request.