INLA or MCMC? A tutorial and comparative evaluation for spatial prediction in log-Gaussian Cox processes

Abstract

We investigate two options for performing Bayesian inference on spatial log-Gaussian Cox processes assuming a spatially continuous latent field: Markov chain Monte Carlo (MCMC) and the integrated nested Laplace approximation (INLA). We first describe the device of approximating a spatially continuous Gaussian field by a Gaussian Markov random field on a discrete lattice, and present a simulation study showing that, with careful choice of parameter values, small neighbourhood sizes can give excellent approx-imations. We then introduce the spatial log-Gaussian Cox process and describe MCMC and INLA methods for spatial prediction within this model class. We report the results of a simulation study in which we compare MALA and the technique of approximating the continuous latent field by a discrete one, followed by approximate Bayesian inference via INLA over a selection of 18 simulated scenarios. The results question the notion that the latter technique is both significantly faster and more robust than MCMC in this setting; 100,000 iterations of the MALA algorithm running in 20 minutes on a desktop PC delivered greater predictive accuracy than the default INLA strategy, which ran in 4 minutes and gave comparative performance to the full Laplace approximation which ran in 39 minutes. 1 a

Similar works

Full text

thumbnail-image
oaioai:CiteSeerX.psu:10.1...Last time updated on 10/30/2017

This paper was published in CiteSeerX.

Having an issue?

Is data on this page outdated, violates copyrights or anything else? Report the problem now and we will take corresponding actions after reviewing your request.