Lasso isotone for high-dimensional additive isotonic regression

Abstract

Additive isotonic regression attempts to determine the relationship between a multi-dimensional observation variable and a response, under the constraint that the estimate is the additive sum of univariate component effects that are monotonically increasing. In this article, we present a new method for such regression called LASSO Isotone (LISO). LISO adapts ideas from sparse linear modelling to additive isotonic regression. Thus, it is viable in many situations with high dimensional predictor variables, where selection of significant versus insignificant variables are required. We suggest an algorithm involving a modification of the backfitting algorithm CPAV. We give a numerical convergence result, and finally examine some of its properties through simulations. We also suggest some possible extensions that improve performance, and allow calculation to be carried out when the direction of the monotonicity is unknown

Similar works

Full text

thumbnail-image
oai:CiteSeerX.psu:10.1.1.747.8893Last time updated on 10/30/2017

This paper was published in CiteSeerX.

Having an issue?

Is data on this page outdated, violates copyrights or anything else? Report the problem now and we will take corresponding actions after reviewing your request.