Article thumbnail
Location of Repository

Clouds and the Faint Young Sun Paradox

By C. Goldblatt and K. J. Zahnle

Abstract

Abstract. We investigate the role which clouds could play in resolving the Faint Young Sun Paradox (FYSP). Lower solar luminosity in the past means that less energy was absorbed on Earth (a forcing of −50 W m−2 during the late Archean), but geological evidence points to the Earth being at least as warm as it is today, with only very occasional glaciations. We perform radiative calculations on a single global mean atmospheric column. We select a nominal set of three lay-ered, randomly overlapping clouds, which are both consis-tent with observed cloud climatologies and reproduce the ob-served global mean energy budget of Earth. By varying the fraction, thickness, height and particle size of these clouds we conduct a wide exploration of how changed clouds could affect climate, thus constraining how clouds could contribute to resolving the FYSP. Low clouds reflect sunlight but have little greenhouse effect. Removing them entirely gives a forc-ing of +25 W m−2 whilst more modest reduction in their effi-cacy gives a forcing of +10 to +15 W m−2. For high clouds, the greenhouse effect dominates. It is possible to generate +50 W m−2 forcing from enhancing these, but this requires making them 3.5 times thicker and 14 K colder than the stan-dard high cloud in our nominal set and expanding their cover-age to 100 % of the sky. Such changes are not credible. More plausible changes would generate no more that +15 W m−2 forcing. Thus neither fewer low clouds nor more high clouds can provide enough forcing to resolve the FYSP. Decreased surface albedo can contribute no more than +5 W m−2 forc-ing. Some models which have been applied to the FYSP do not include clouds at all. These overestimate the forcing due to increased CO2 by 20 to 25 % when pCO2 is 0.01 to 0.1 bar.

Year: 2013
OAI identifier: oai:CiteSeerX.psu:10.1.1.745.6254
Provided by: CiteSeerX
Download PDF:
Sorry, we are unable to provide the full text but you may find it at the following location(s):
  • http://arxiv.org/pdf/1102.3209... (external link)
  • http://arxiv.org/pdf/1102.3209... (external link)
  • http://citeseerx.ist.psu.edu/v... (external link)
  • Suggested articles


    To submit an update or takedown request for this paper, please submit an Update/Correction/Removal Request.