Article thumbnail

EVALUATING THE EFFECTS OF HIGH LIQUID VISCOSITY AND FLOW VARIABLES ON HORIZONTAL OIL–GAS SLUG FLOWS BY GAMMA RADIATION METHOD

By C. N. Okezue

Abstract

Hydrodynamic slug fl ow is the commonest fl ow regime observed in high viscosity liquid–gas horizon-tal pipelines over a wide range of different fl ow conditions. Hydrodynamic slugging tends to generate large vibrations that may impose structural instability or even damage oil production pipelines. For that reason, there is a need to investigate high viscosity slug fl ow regime to understand its complex characteristics. This is pertinent when considering that existing slug fl ow models used in the petroleum industry to design production pipelines are not suitable for predicting the behaviour of high viscosity oil–gas fl ow. In this study, the effects of liquid viscosity and fl ow variables on slug fl ow regime were investigated experimentally through the analysis of two key parameters—slug frequency and slug body liquid holdup, both measured with a gamma densitometer. Comparison of the measured slug param-eters to existing correlations revealed that slug body liquid holdup correlations were in close agreement with high viscosity experimental data. However, none of the existing slug frequency correlations used was able to produce accurate predictions. A new empirical correlation for slug frequency was proposed. Compared with existing correlations, the newly proposed correlation performed much better in predict-ing slug frequency of high viscosity liquid–gas fl ows

Topics: Empirical correlation, gamma beam densitometer, hydrodynamic slug fl ow regime, multiple- linear regression, slug body liquid holdup
Year: 2016
OAI identifier: oai:CiteSeerX.psu:10.1.1.735.4158
Provided by: CiteSeerX
Download PDF:
Sorry, we are unable to provide the full text but you may find it at the following location(s):
  • http://www.witpress.com/Secure... (external link)
  • http://www.witpress.com/Secure... (external link)
  • http://citeseerx.ist.psu.edu/v... (external link)

  • To submit an update or takedown request for this paper, please submit an Update/Correction/Removal Request.

    Suggested articles