Skip to main content
Article thumbnail
Location of Repository

Combining Self Training and Active Learning for Video Segmentation

By Alireza Fathi, Maria Florina Balcan, Xiaofeng Ren and James M. Rehg


Presented at the 22nd British Machine Vision Conference (BMVC 2011), 29 August-2 September 2011, University of Dundee, Scotland, UK.DOI: work addresses the problem of segmenting an object of interest out of a video. We show that video object segmentation can be naturally cast as a semi-supervised learning problem and be efficiently solved using harmonic functions. We propose an incremental self-training approach by iteratively labeling the least uncertain frame and updating similarity metrics. Our self-training video segmentation produces superior results both qualitatively and quantitatively. Moreover, usage of harmonic functions naturally supports interactive segmentation. We suggest active learning methods for providing guidance to user on what to annotate in order to improve labeling efficiency. We present experimental results using a ground truth data set and a quantitative comparison to a representative object segmentation system

Topics: Harmonic functions, Object tracking, Self training, Video object segmentation
Publisher: Georgia Institute of Technology
Year: 2011
DOI identifier: 10.5244/C.25.78
OAI identifier:
Download PDF:
Sorry, we are unable to provide the full text but you may find it at the following location(s):
  • (external link)
  • (external link)
  • Suggested articles

    To submit an update or takedown request for this paper, please submit an Update/Correction/Removal Request.