Article thumbnail
Location of Repository

Instrument Trade Study Final Report Advanced Microwave Radiometry and Scatterometry

By Eni G. Njoku, Bill Wilson, Simon Yueh and Yahya Rahmat-samii

Abstract

Microwave radiometry and scatterometry are preferred techniques for many remote sensing applications, particularly for measurements of soil moisture, snow cover, sea ice extent and motion, sea surface salinity, sea surface temperature, and sea surface wind velocity. Achieving a given spatial resolution for these measurements requires much larger effective apertures at microwave frequencies than at optical and infrared frequencies. It is thus a challenge, for low-frequency microwave systems, to achieve high spatial resolution within necessary limits on payload size and cost. In this study we have examined techniques and technology options for achieving desired microwave system performance (high spatial resolution and accuracy) using low-mass deployable antennas. We have focused on soil moisture and ocean salinity, as science applications of high priority that drive the requirement for large antennas, and cannot at present be measured adequately from space. System and subsystem performance requirements have been defined, traceable to the science requirements for these parameters, in order to establish detailed technology targets, and to enable planning and prioritization, for a potential space mission. For soil moisture and salinity sensing, the desired frequencies are in the range 1 to 3 GHz, an

Year: 1998
OAI identifier: oai:CiteSeerX.psu:10.1.1.499.344
Provided by: CiteSeerX
Download PDF:
Sorry, we are unable to provide the full text but you may find it at the following location(s):
  • http://esto.nasa.gov/files/199... (external link)
  • http://esto.nasa.gov/files/199... (external link)
  • http://citeseerx.ist.psu.edu/v... (external link)
  • Suggested articles


    To submit an update or takedown request for this paper, please submit an Update/Correction/Removal Request.