192828 research outputs found
Sort by
Accelerated high-cycle phase field fatigue predictions
Phase field fracture models have seen widespread application in the last decade. Among these applications, its use to model the evolution of fatigue cracks has attracted particular interest, as fatigue damage behaviour can be predicted for arbitrary loading histories, dimensions and complexity of the cracking phenomena at play. However, while cycle-by-cycle calculations are remarkably flexible, they are also computationally expensive, hindering the applicability of phase field fatigue models for technologically-relevant problems. In this work, a computational framework for accelerating phase field fatigue calculations is presented. Two novel acceleration strategies are proposed, which can be used in tandem and together with other existing acceleration schemes from the literature. The computational performance of the proposed methods is documented through a series of 2D and 3D boundary value problems, highlighting the robustness and efficiency of the framework even in complex fatigue problems. The observed reduction in computation time using both of the proposed methods in tandem is shown to reach a speed-up factor of 32, with a scaling trend enabling even greater reductions in problems with more load cycles
Flexible operation, optimisation and stabilising control of a quench cooled ammonia reactor for power-to-ammonia
This paper discusses the operation of an ammonia reactor for a Power-to-Ammonia (P2A) plant. We develop a dynamic model for an ammonia reactor system consisting of a three-bed quench cooled adiabatic reactor and a feed-effluent heat exchanger. The reactor bed model is formulated as a differential algebraic equations (DAE) system. We use the thermodynamic software Thermolib for rigorous modeling of the thermodynamic functions in the high pressure ammonia reactor. We present a case study of an ammonia synthesis loop in a P2A plant connected to a 250 MW renewable energy source with a capacity factor of 0.4. Static optimization and stability analysis are performed for the reactor system, which located the optimal operating point close to instability. The dynamic simulations confirm the unstable operating regions as severe oscillations arise. A fluctuating energy supply from renewable sources requires the ammonia reactor to operate over a wide operating window from 20%–120% of nominal capacity. We formulate a realistic strategy for varying the supply of H2 and (load) to the synthesis loop depending on the available energy. Open-loop simulations show that varying the synthesis feed flow cause oscillations in the ammonia reactor system. Therefore, we propose a regulatory control structure for stabilising the ammonia reactor. The optimisation algorithm determines the reactor set-point state by updating at changes to the synthesis loop load. Hereby, we achieved fast control and close tracking of the set-points for the ammonia reactor
Microgel-Extracellular Matrix Composite Support for the Embedded 3D Printing of Human Neural Constructs
The embedded 3D printing of cells inside a granular support medium has emerged in the past decade as a powerful approach for the freeform biofabrication of soft tissue constructs. However, granular gel formulations have been restricted to a limited number of biomaterials that allow for the cost-effective generation of large amounts of hydrogel microparticles. Therefore, granular gel support media have generally lacked the cell-adhesive and cell-instructive functions found in the native extracellular matrix (ECM). To address this, a methodology has been developed for the generation of self-healing annealable particle-extracellular matrix (SHAPE) composites. SHAPE composites consist of a granular phase (microgels) and a continuous phase (viscous ECM solution) that, together, allow for both programmable high-fidelity printing and an adjustable biofunctional extracellular environment. This work describes how the developed methodology can be utilized for the precise biofabrication of human neural constructs. First, alginate microparticles, which serve as the granular component in the SHAPE composites, are fabricated and combined with a collagen-based continuous component. Then, human neural stem cells are printed inside the support material, followed by the annealing of the support. The printed constructs can be maintained for weeks to allow the differentiation of the printed cells into neurons. Simultaneously, the collagen continuous phase allows for axonal outgrowth and the interconnection of regions. Finally, this works provides information on how to perform live-cell fluorescence imaging and immunocytochemistry to characterize the 3D-printed human neural constructs
Ce<sup>3+</sup>-based phosphor converter enabling laser lighting to attain both high CRI and high luminous efficacy
Eu2+ doped-CaAlSiN3 possesses broad red emission, enabling a phosphor-converted lighting device to achieve a high color rendering index (CRI) and proper color temperature. However, CaAlSiN3:Eu2+ exhibits relatively slow decay (∼1 μs) and intense re-absorption of luminescence from green/yellow emitters, thereby causing optical saturation and reducing the luminous efficacy. Here, we fabricated a novel phosphor converter comprising Lu3Al5O12:Ce3+ and Y1.3Gd1.6Al5O12:Ce3+ powders. The typical sample, when excited by a blue laser, exhibited a high luminous efficacy of 231 lm/W and a high saturation threshold of 22.2 W/mm2, resulting in a high luminous exitance of 695 lm/mm2. Importantly, the phosphor converter produced a broad emission band that included sufficient cyan and red components, resulting in a full width at half maximum (FWHM) of 134 nm and a high CRI of 81. With this excellent balance between CRI and luminous efficacy, the reported phosphor converter can significantly expand the range of laser lighting applications.</p
Co-enhancing effects of zero valent iron and magnetite on anaerobic methanogenesis of food waste at transition temperature (45 °C) and various organic loading rates
Deoiling of food waste (FW) after hydrothermal pretreatment occurs at high temperatures, and more energy is required for substrate cooling before the anaerobic digestion (AD) process. AD at the transition temperature (for example 45 °C) is good for energy saving and carbon emission reducing when treating deoiling FW. However, the metabolic activity of methanogens must increase at the transition temperatures. This study proposes the use of zero-valent iron (Fe0) and magnetite (Fe3O4) to boost CH4 yield from deoiling FW. The results showed a co-enhancing effect on CH4 yield upgradation when using Fe0 and Fe3O4 simultaneously, and the highest CH4 yield reached 536.23 mLCH4/gVS, which was 67.5 % higher than that of Fe0 alone (320.14 mLCH4/gVS). In addition, a high organic loading was favorable for increasing the CH4 yield from deoiling FW. Microbial diversity analysis suggested that the dominant methanogenic pathway at 45 °C was hydrogenotrophic methanogenesis. Herein, a potential metabolic pathway analysis revealed that the co-enhancing effects of Fe0 and Fe3O4 enhanced syntrophic methanogenesis and possibly boosted electron transfer efficiency
Constituents of Human Particle, Microbial and Chemical Emissions and Exposures in Indoor Environments: An experimental overview
This study presents the preliminary findings on the human contribution to particle, microbe and gas-phase chemical burden of indoor air, as well as the effect of ozone on malondialdehyde (MDA) levels, a biomarker of lipid peroxidation
Life cycle assessment of lithium ion battery from water-based manufacturing for electric vehicles
Lithium ion batteries produced using the water-based manufacturing processes, as a greener technology, have great potential to be used in future electric vehicles (EVs). A cradle-to-grave life cycle assessment model configured for actual EV applications has been developed for the water-based manufactured lithium nickel manganese cobalt oxide (NMC)-graphite battery pack. Experimental and modeling results cover raw material extraction and processing, water-based battery manufacturing processes, battery usage during EV driving, and direct recycling at End-of-Life. The ReCiPe method is employed to investigate the environmental impacts of the water-based battery pack and benchmark it against the impacts of a conventional N-methyl-2-pyrrolidone (NMP)-based battery pack with the same mass. The cradle-to-grave energy consumption of the studied water-based battery pack is 0.976 MJ/km EV driving, equivalent to a 4.5% reduction over the NMP-based battery pack. Aside from energy usage, we find reductions in all environmental impact categories (3.0%∼85%) compared to the conventional battery pack
Does the outside view affect the luminous and thermal perception? A preliminary study
This study explores whether differences in urban views affect thermal and visual perception. Experimental sessions were conducted in two identical office rooms with controlled temperatures, naturally lit but with different window views. Split into two groups by temperature (between subjects), the participants were exposed to two window views (within subjects). The results of this preliminary study indicate that the thermal and visual perception were not significantly different between the window views
Hydrodynamic performance analysis of a new hybrid wave energy converter system using OpenFOAM
In this research study, a newly proposed hybrid device of Wave Energy Converters (WEC) is investigated by considering computational fluid dynamic (CFD)-based numerical wave tanks (NWTs). The open-source CFD code solver, OpenFOAM (Open Field Operation and Manipulation) is implemented, which is numerically solved the Reynolds-averaged Navier–Stokes (RANS) equations to simulate the two-phase flow. The hybrid system consists of an Oscillating Water Column (OWC) and a point absorber (Wavestar) device installed in a shared platform. The main goal is to recognize how wave diffractions caused by the adjacent floating body could affect the rate of power absorption by the Fixed-OWC. This aim is followed by a 2D numerical analysis of three different installation configurations, variable intervals between the Wavestars' buoy and the Fixed-OWCs' front wall, in four different wavelengths with and without Power Take-Off (PTO). Finally, the efficiency characteristics of the integrated system such as free surface velocity and air pressure within the chamber, besides floating body motions are investigated and compared for the hybrid system. Although the overall assessment for 28 different case studies reveals an efficiency reduction in some cases, the superiority of this hybrid plan is recording several incremental efficiency rates
Feasibility analysis of clean utilization of kitchen waste oil and lignite by co-fermentation treatment
In order to improve the efficiency of biomethane production through lignite anaerobic fermentation and perform the treatment and application of kitchen waste oil (KWO), different KWO to lignite ratios were used for combined anaerobic fermentation of biomethane. Biogas production characteristics, fermentation broth, and solid residue utilization properties of co-fermentation were analyzed using liquid fatty acid, thermogravimetric (TG), and combustion flue gas tests. The experimental results show that the co-anaerobic fermentation of KWO and lignite can improve the biogenic methane production, and the ratio of the two will also affect the biogenic methane production. Among them, the biogenic methane production by the co-anaerobic fermentation of 1.2 g KWO and 20 g of lignite is the largest, which is 377.86% higher than that by the anaerobic fermentation of single lignite. According to the three-dimensional fluorescence spectrum analysis, the fermentation substrate with the highest biogenic methane production contains more fulvic acid, tryptophan, lysine, phenol hydroxyl, ketone carbonyl, carbonyl, and other groups. In the change of fatty acid content before and after anaerobic fermentation, the content of palmitic acid, stearic acid, oleic acid, and other non-degradable fatty acids contained in KWO significantly decreased, and the volatile fatty acids significantly increased. After anaerobic fermentation, the volatilization analysis temperature, ignition point, and combustion temperature of residual coal are advanced, and the combustion is more stable. At the same time, the emission of combustion pollution gas of residual coal after fermentation is significantly reduced, which is conducive to the clean utilization of lignite