University of Ljubljana

Digital Repository UL FGG
Not a member yet
    2960 research outputs found

    Geosynthetic-encased stone columns: analytical calculation model

    Get PDF
    This paper presents a newly developed design method for non-encased and encased stone columns. The developed analytical closed-form solution is based on previous solutions, initially developed for non-encased columns and for non-dilating rigid-plastic column material. In the present method, the initial stresses in the soil/column are taken into account, with the column considered as an elasto-plastic material with constant dilatancy, the soil as an elastic material and the geosynthetic encasement as a linear-elastic material. To check the validity of the assumptions and the ability of the method to give reasonable predictions of settlements, stresses and encasement forces, comparative elasto-plastic finite element analyses have been performed. The agreement between the two methods is very good, which was the reason that the new method was used to generate a parametric study in order to investigate various parameters, such as soil/column parameters, replacement ratio, load level and geosynthetic encasement stiffness on the behaviour of the improved ground. The results of this study show the influence of key parameters and provide a basis for the rational predictions of settlement response for various encasement stiffnesses, column arrangements and load levels. The practical use of the method is illustrated through the design chart, which enables preliminary selection of column spacing and encasement stiffness to achieve the desired settlement reduction for the selected set of the soil/column parameters. (C) 2010 Elsevier Ltd. All rights reserved

    Moving-boundary problems solved by adaptive radial basis functions

    Get PDF
    The objective of this paper is to present an alternative approach to the conventional level set methods for solving two-dimensional moving-boundary problems known as the passive transport. Moving boundaries are associated with time-dependent problems and the position of the boundaries need to be determined as a function of time and space. The level set method has become an attractive design tool for tracking, modeling and simulating the motion of free boundaries in fluid mechanics, combustion, computer animation and image processing. Recent research on the numerical method has focused on the idea of using a meshless methodology for the numerical solution of partial differential equations. In the present approach, the moving interface is captured by the level set method at all time with the zero contour of a smooth function known as the level set function. A new approach is used to solve a convective transport equation for advancing the level set function in time. This new approach is based on the asymmetric meshless collocation method and the adaptive greedy algorithm for trial subspaces selection. Numerical simulations are performed to verify the accuracy and stability of the new numerical scheme which is then applied to simulate a bubble that is moving, stretching and circulating in an ambient flow to demonstrate the performance of the new meshless approach. (C) 2010 Elsevier Ltd. All rights reserved

    Non-linear analysis of two-layer timber beams considering interlayer slip and uplift

    Get PDF
    A new mathematical model and its finite element formulation for the non-linear analysis of mechanical behaviour of a two-layer timber planar beam is presented. A modified principle of virtual work is employed in formulating the finite element method. The basic unknowns are strains. The following assumptions are adopted in the mathematical model: materials are taken to be non-linear and can differ from layer to layer; interacting shear and normal contact tractions between layers are derived from the non-linear shear contact traction-slip and the non-linear normal contact traction-uplift characteristics of the connectors; the geometrically linear and materially non-linear Bernoulli's beam theory is assumed for each layer. The formulation is found to be accurate, reliable and computationally effective. The suitability of the theory is validated by the comparison of the numerical solution and the experimental results of full-scale laboratory tests on a simply supported beam. An excellent agreement between measured and calculated results is observed for all load levels. The further objective of the paper is the analysis of the effect of different normal contact traction-uplift constitutive relationships on the kinematic and static quantities in a statically determined and undetermined structure. While the shear contact traction-slip constitutive relationship dictates the deformability of the composite beam and has a substantial influence on most of the static and kinematic quantities of the composite beam, a variable normal contact traction-uplift constitutive relationship is in most cases negligible

    On large deformations of thin elasto-plastic shells: Implementation of a finite rotation model for quadrilateral shell element

    Get PDF
    A large-deformation model for thin shells composed of elasto-plastic material is presented in this work, Formulation of the shell model, equivalent to the two-dimensional Cosserat continuum, is developed from the three-dimensional continuum by employing standard assumptions on the distribution of the displacement held in the shell body, A model for thin shells is obtained by an approximation of terms describing the shell geometry. Finite rotations of the director field are described by a rotation vector formulation. An elasto-plastic constitutive model is developed based on the von Mises yield criterion and isotropic hardening. In this work, attention is restricted to problems where strains remain small allowing for all aspects of material identification and associated computational treatment, developed for small-strain elastoplastic models, to be transferred easily to the present elasto-plastic thin-shell model. A finite element formulation is based on the four-noded isoparametric element. A particular attention is devoted to the consistent linearization of the shell kinematics and elasto-plastic material model, in order to achieve quadratic rate of asymptotic convergence typical for the Newton-Raphson-based solution procedures. To illustrate the main objective of the present approach-namely the simulation of failures of thin elastoplastic shells typically associated with buckling-type instabilities and/or bending-dominated shell problems resulting in formation of plastic hinges-several numerical examples are presented, Numerical results are compared with the available experimental results and representative numerical simulations

    The wavelet-based theory of spatial naturally curved and twisted linear beams

    Get PDF
    The paper presents the wavelet-based discretization of the linearized finite-strain beam theory which assumes small displacements, rotations and strains but is capable of considering an arbitrary initial geometry and material behaviour. In the numerical solution algorithm, we base our derivations on the vector of strain measures as the only unknown functions in a finite element. In such a way the determination of the beam quantities does not require the differentiation. This is an important advantage which allows a wider range of shape functions. In the present paper, the classical polynomial interpolation is compared to scaling and wavelet function interpolations. The computational efficiency of the method is demonstrated by analyzing initially curved and twisted beams

    Numerical modelling of behaviour of reinforced concrete columns in fire and comparison with Eurocode 2

    Get PDF
    The paper describes a two-step finite element formulation for the thermo-mechanical non-linear analysis of the behaviour of the reinforced concrete columns in fire. In the first step, the distributions of the temperature over the cross-section during fire are determined. In the next step, the mechanical analysis is made in which these distributions are used as the temperature loads. The analysis employs our new strain-based planar geometrically exact and materially non-linear beam finite elements to model the column. The results are compared with the measurements of the full-scale test on columns in fire and with the results of the European building code EC 2. The resistance times of the present method and the test were close. It is also noted that the building code EC 2 might be non-conservative in the estimation of the resistance time. (c) 2005 Elsevier Ltd. All rights reserved

    Assessment of hydrological and seasonal controls over the nitrate flushing from a forested watershed using a data mining technique

    Get PDF
    A data mining, regression tree algorithm M5 was used to review the role of mutual hydrological and seasonal settings which control the streamwater nitrate flushing during hydrological events within a forested watershed in the southwestern part of Slovenia, characterized by distinctive flushing, almost torrential hydrological regime. The basis for the research was an extensive dataset of continuous, high frequency measurements of seasonal meteorological conditions, watershed hydrological responses and streamwater nitrate concentrations. The dataset contained 16 recorded hydrographs occurring in different seasonal and hydrological conditions. Based on predefined regression tree pruning criteria, a comprehensible regression tree model was obtained in the sense of the domain knowledge, which was able to adequately describe most of the streamwater nitrate concentration variations (RMSE=1.02mg/l-N; r=0.91). The attributes which were found to be the most descriptive in the sense of streamwater nitrate concentrations were the antecedent precipitation index (API) and air temperatures in the preceding periods. The model was most successful in describing streamwater concentrations in the range 1-4 mg/l-N, covering large proportion of the dataset. The model performance was little worse in the periods of high streamwater nitrate concentration peaks during the summer hydrographs (up to 7 mg/l-N) but poor during the autumn hydrograph (up to 14 mg/l-N) related to highly variable hydrological conditions, which would require a less robust regression tree model based on the extended dataset

    Statistical testing of directions observations independence

    Get PDF
    Independence of observations is often assumed when adjusting geodetic network. Unlike the\ud distance observations, no dependence of environmental conditions is known for horizontal\ud direction observations. In order to determine the dependence of horizontal direction observations,\ud we established test geodetic network of a station and four observation points. Measurements of\ud the highest possible accuracy were carried out using Leica TS30 total station along with precise\ud prisms GPH1P. Two series of hundred sets of angles were measured, with the first one in bad\ud observation conditions. Using different methods, i.e. variance–covariance matrices, x2 test and analyses of time series, the independence of measured directions, reduced directions and horizontal angles were tested. The results show that the independence of horizontal direction\ud observations is not obvious and certainly not in poor conditions. In this case, it would be appropriate for geodetic network adjustments to use variance–covariance matrix calculated from measurements instead of diagonal variance–covariance matrix

    The use of artificial neural networks in adiabatic curves modeling

    Get PDF
    Adiabatic hydration curves are the most suitable data for temperature calculations in concrete hardening structures. However, it is very difficult to predict the adiabatic hydration curve of an arbitrary concrete mixture. The idea of modeling adiabatic temperature rise during concrete hydration with the use of artificial neural networks was introduced in order to describe the adiabatic hydration of an arbitrary concrete mixture, depending on factors which influence the hydration process of cement in concrete. The influence of these factors was determined by our own experiments. A comparison between experimentally determined adiabatic curves and adiabatic curves, evaluated by proposed numerical model shows that artificial neural networks can be used to predict adiabatic hydration curves effectively. This model can be easily incorporated in the computer programs for prediction of the thermal fields in young concrete structures, implemented in the finite element or finite difference codes. New adiabatic hydration curves with some other initial parameters of the concrete mixture can be easily included in this model in order to expand the range of suitability of artificial neural networks to predict the adiabatic hydration curves. (C) 2008 Elsevier B.V. All rights reserved

    The influence of boundary conditions and axial deformability on buckling behavior of two-layer composite columns with interlayer slip

    Get PDF
    This paper presents a detailed analysis of the influence of boundary conditions and axial deformation on the critical buckling loads of the geometrically perfect elastic two-layer composite columns with interlayer slip between the layers. An investigation is based on the extension of our preliminary analytical study of slip-buckling behavior of two-layer composite columns. It is proved that the boundary conditions of composite columns with interlayer slip are interrelated in longitudinal and transverse directions. The parametric analysis reveals that the influence of different longitudinal boundary conditions on critical buckling load is significant and can be up to 20%, while, on the other hand, the influence of axial deformation is negligible. (C) 2010 Elsevier Ltd. All rights reserved

    2,765

    full texts

    2,960

    metadata records
    Updated in last 30 days.
    Digital Repository UL FGG is based in SI
    Access Repository Dashboard
    Do you manage Open Research Online? Become a CORE Member to access insider analytics, issue reports and manage access to outputs from your repository in the CORE Repository Dashboard! 👇