
Greenwich Academic Literature Archive (GALA)
– the University of Greenwich open access repository

http://gala.gre.ac.uk

__

Citation:

Rajalingham, Kamalasen (2002) The development of a structured methodology for the construction
and integrity control of spreadsheet models. PhD thesis, University of Greenwich.

__

Please note that the full text version provided on GALA is the final published version awarded

by the university. “I certify that this work has not been accepted in substance for any degree,

and is not concurrently being submitted for any degree other than that of (name of research

degree) being studied at the University of Greenwich. I also declare that this work is the result

of my own investigations except where otherwise identified by references and that I have not

plagiarised the work of others”.

Rajalingham, Kamalasen (2002) The development of a structured methodology for the construction

and integrity control of spreadsheet models. ##thesis _type## , ##institution##

Available at: http://gala.gre.ac.uk/6276/

__

Contact: gala@gre.ac.uk

http://gala.gre.ac.uk/
mailto:gala@gre.ac.uk

THE DEVELOPMENT OF A STRUCTURED
METHODOLOGY FOR THE CONSTRUCTION AND

INTEGRITY CONTROL OF SPREADSHEET MODELS

KAMALASEN RAJALINGHAM

A thesis submitted in partial fulfilment of the
requirements of the University of Greenwich

for the degree of Doctor of Philosophy

December 2002

Oj>

ill
*" r -^

Declaration

/ certify that this work has not been accepted in substance for any degree, and is not
concurrently submitted for any degree other than that of Doctor of Philosophy (PhD)
of the University of Greenwich. I also declare that this work is the result of my own

investigations except where otherwise stated.

Student:
r~-

Kamalasen Rajalingham

Supervisor:

Professor Brian Knight

Abstract

Numerous studies and reported cases have established the seriousness of the
frequency and impact of user-generated spreadsheet errors. This thesis presents a
structured methodology for spreadsheet model development, which enables improved
integrity control of the models. The proposed methodology has the potential to ensure
consistency in the development process and produce more comprehensible, reliable
and maintainable models, which can reduce the occurrence of user-generated errors.

An insight into the nature and properties of spreadsheet errors is essential for the
development of a methodology for controlling the integrity of spreadsheet models. An
important by-product of the research is the development of a comprehensive
classification or taxonomy of the different types of user-generated spreadsheet errors
based on a rational taxonomic scheme.

Research on the phenomenon of spreadsheet errors has revealed the need to adopt a
software engineering based methodology as a framework for spreadsheet
development in practical situations. The proposed methodology represents a new
approach to the provision of a structured, software engineering based discipline for
the development of spreadsheet models.

It is established in this thesis that software engineering principles can in fact be
applied to the process of spreadsheet model building to help improve the quality of
the models. The methodology uses Jackson structures to produce the logical design of
the spreadsheet model. This is followed by a technique to derive the physical model,
which is then implemented as a spreadsheet. The methodology's potential for
improving the quality of spreadsheet models is demonstrated.

In order to evaluate the effectiveness of the proposed framework, the various features
of the proposed structured methodology are tested on a range of spreadsheet models
through a series of experiments. The results of the tests provide adequate evidence of
the methodology's potential to reduce the occurrence of user-generated errors and
enhance the comprehensibility of the models.

Acknowledgements

I would like to express my heartfelt thanks and appreciation, first and foremost, to the
members of my supervisory team in the School of Computing and Mathematical
Sciences of the University of Greenwich (England). They are Professor Brian Knight,
Mr David Chadwick and Dr Dilwyn Edwards.

I am also grateful to the following individuals for their support, guidance, advice and
co-operation in the research programme:

 Mr Mike Shallcross, former Principal Consultant, Financial Modelling
Department, KPMG Management Consulting (London)

 Mr Chris Conlong, Principal Consultant, Financial Modelling Department, KPMG
Management Consulting (London)

 Mr David Colver, Joint Chief Executive, Operis Group pic (London)

 Dr Nadarajah Ramesh, Senior Lecturer (Statistics), School of Computing and
Mathematical Sciences, University of Greenwich (England)

 Mr Patrick Lees, Chair of the Information Systems Department, Cavendish School
of Computer Science, University of Westminster (London)

 Dr Dusko Dincov, Lecturer, School of Computing and Mathematical Sciences,
University of Greenwich (England)

 Mr Chris Rodger, Principal Consultant, Business Dynamics Consultancy Group,
PricewaterhouseCoopers (London)

 Dr Anthony Berglas (Developer of Spreadsheet Detective), Southern Cross
Software Qld (Australia)

 Mr Ray Butler, Chief Technical Adviser to the Joint Head of Computer Audit
Services, HM Customs & Excise (United Kingdom) & Chairman of the North
England ISACA Chapter

 Professor Raymond Panko, Professor of Business Administration, University of
Hawai'i (Honolulu)

I would also like to thank my parents for their constant support and encouragement.

Keywords

Spreadsheet, Spreadsheet Model, Error, Methodology, Taxonomy, Software
Engineering, Modularisation, Jackson Structured Programming (JSP), Integrity
Control, Structured Methods, Structured Spreadsheet Development

TABLE OF CONTENTS

ABSTRACT .. 1

ACKNOWLEDGEMENTS... 2

KEYWORDS ... 3

TABLE OF CONTENTS .. 4

CHAPTER 1

INTRODUCTION.. 8

1.1 OVERVIEW.. 8
1.2 CONTRIBUTIONS OF THE THESIS... .. 9
1.3 OUTLINE OF THE THESIS ... 10
1.4 TIME-LINE OF DEVELOPMENTS .. 11
1.5 RESEARCH APPROACHES .. 14

CHAPTER 2

BACKGROUND..^

2.1 Tm^OD\]ClIO^......... .. .15
2.2 AN INSIGHT INTO SPREADSHEETS ... 15
2.3 THE PHENOMENON OF SPREADSHEET ERRORS 16
2.4 NEED FOR A DISCIPLINED AND STRUCTURED APPROACH 21
2.5 SUMMARY. ... 23

CHAPTER 3

ANALYSIS AND CLASSIFICATION OF SPREADSHEET ERRORS 24

3.1 INTRODUCTION24
3.2 THE CONCEPT OF TAXONOMY OR CLASSIFICATION 24
3.3 RATIONALE FOR THE CLASSIFICATION OF THE ERRORS.......... 25
3.4 DERIVATION OF THE TAXONOMIC SCHEME.25
3.5 THE CLASSIFICATION OF ERRORS .. 27
3.6 SUMMARY. ... 50

CHAPTER 4

PAST WORK AND EXISTING DEVELOPMENTS 52

4.1 INTRODUCTION... 52
4.2 EXISTING TOOLS AND TECHNIQUES 52
4.3 SPREADSHEET DEVELOPMENT LIFE CYCLE

AND METHODOLOGY..62
4.4 SUMMARY...70

CHAPTER 5

PRELIMINARY INVESTIGATION AND DEVELOPMENTS 72

5.1 INTRODUCTION...72
5.2 ANALYSIS OF SPREADSHEET STRUCTURE.............................. 72
5.3 INITIAL APPROACHES EXPLORED AND DEVELOPED 75
5.4 SUMMARY.. 82

CHAPTER 6

SOFTWARE ENGINEERING PRINCIPLES
AND JACKSON STRUCTURES ... 83

6.1 INTRODUCTION...83
6.2 SOFTWARE ENGINEERING PRINCIPLES 83
6.3 RATIONALE FOR SELECTION OF JACKSON STRUCTURES 85
6.4 CONCEPTS AND NOTATIONS OF JACKSON STRUCTURES 86
6.5 JACKSON STRUCTURE RULES ... 90
6.6 OTHER PRINCIPLES AND TECHNIQUES.................................... 91
6.7 SUMMARY..93

CHAPTER 7

PROPOSED STRUCTURED METHODOLOGY 94

7.1 INTRODUCTION.. 94
7.2 DEVELOPMENT AND SYNTHESIS OF THE

	PROPOSED METHODOLOGY..94
7.3 THE PROPOSED STRUCTURED METHODOLOGY 103
7.4 APPLICATION OF THE PROPOSED METHODOLOGY 116
7.5 POTENTIAL FOR QUALITY IMPROVEMENT................................. 120
7.6 SUMMARY.. 122

CHAPTER 8

EVALUATION STRATEGY AND EXPERIMENTS 124

8.1 INTRODUCTION.. 124
8.2 THE EVALUATION STRATEGIES .. 126
8.3 THE EXPERIMENTS UNDERTAKEN... 127
8.4 SUMMARY... 139

CHAPTER 9

ANALYSIS OF RESULTS ... 142

9.1 INTRODUCTION.. 142
9.2 RESULTS OF EXPERIMENTS ... 142
9.3 SUMMARY... 157

CHAPTER 10

CONCLUSIONS AND FUTURE WORK .. 158

10.1 CONCLUSIONS...158
10.2 FUTURE WORK.. 160

REFERENCES ...161

APPENDIX A

FREQUENCY OF SPREADSHEET ERRORS (Panko-96,98,00).................. 173

APPENDIX B

DESCRIPTIONS OF CORPORATE/WORKGROUP
POLICIES (Panko-96)... 176

APPENDIX C

EXAMPLES OF THE PROPOSED METHODOLOGY 178

APPENDIX D

SPREADSHEET MODELS USED IN THE EXPERIMENTS 206

APPENDIX E

NORMALITY TEST RESULTS (GRAPHS)... 231

APPENDIX F

RAW DATA FROM THE EXPERIMENTS .. 240

CHAPTER 1
INTRODUCTION

1.1 Overview

Over the years, spreadsheet users in business and academia have been completely
taken aback by the appalling rates of user-generated errors occurring in spreadsheet
models. Many publications have also described the adverse effect this phenomenon
has had on businesses and other organisations. As a result, many groups of users and
individuals from the commercial and non-commercial sectors have endeavoured to
find solutions to the problem.

Despite all the efforts, the problem has been prevalent. The initial efforts to establish
the magnitude of the problem of spreadsheet errors were based on measuring error
rates and studying the impact of the errors on organisations. All the experiments and
studies that were carried out proved beyond any doubt that this was indeed a very
critical problem (Brown-87, Davies-87, Panko-96, Freeman-96, Ward-97) which had
to be addressed urgently. However, there was very limited material available on
specific types of spreadsheet errors. Therefore, far more extensive research had to be
undertaken to identify, analyse and classify specific types of spreadsheet errors.

The focus of authors on the subject of spreadsheet model integrity subsequently
turned towards ascertaining the cause of and reasons for the occurrence of user-
generated spreadsheet errors. Many who carefully analysed the problem were able to
conclude that the principal cause of these errors was the absence of standards for or a
structured approach to designing and developing spreadsheet models (Ronen-89,
Cragg-93, Isakowitz-95, Hall-96). Such standards and structured methods have
however been adopted in other areas of software and systems development such as
programming and database development. Authors responded to this discovery by
recommending the adoption of software engineering principles and traditional
programming techniques in the process of spreadsheet model building (Benham-93,
Isakowitz-95, Panko-96, Davis-96, Kavanagh-97). However, none came up with a
comprehensive methodology based on this requirement.

In general, two distinct approaches can be adopted to address the problem of user-
generated spreadsheet errors. The first approach involves developing tools and
methods to help identify errors in spreadsheet models so that they can be corrected. In
a desperate pursuit for immediate solutions, this is the approach taken by most
organisations at present, as a large number of existing spreadsheet models are already
infested with errors. The second approach concentrates on preventing the errors from
occurring in the first place. In order to achieve this, an effective methodology for
controlling the integrity of spreadsheet models has to be developed and applied.

The principal objective of this research programme is to examine the possibility of
developing a structured methodology for the quality or integrity control of spreadsheet
models. This involves an investigation into the application of software engineering
principles and techniques to the process of spreadsheet design and development.

1.2 Contributions of the Thesis

Basic Questions Posed at the Outset of this Work

These are the questions which the work described in this thesis has been directed
towards:

Primary Question

 Can a structured methodology be developed for the integrity control of
spreadsheet models? Can such a framework for quality control of spreadsheet
models reduce the occurrence of user-generated errors?

Secondary Questions

 Can a classification of the different types of user-generated spreadsheet errors be
developed based on a rational taxonomic scheme?

 What framework for spreadsheet model development is most likely to be optimum
in a practical situation?

 How effective is the framework?

 Can software engineering principles be applied to the process of spreadsheet
model building to help improve the quality of the models?

Contributions

Several contributions are made in this thesis. Firstly, a diverse collection of user-
generated spreadsheet errors have been collected, analysed and categorised according
to a rational taxonomic scheme. The provision of this comprehensive classification of
the different types of spreadsheet errors is based on an analysis of the properties of
user-generated errors. The errors are accumulated from numerous spreadsheet models.
The spreadsheet error taxonomy is described in detail and supported by appropriate
examples.

Secondly, structured techniques and principles have been proposed as the basis of a
novel spreadsheet development methodology. The proposed structured methodology
fundamentally adopts a software engineering approach and is based on established
principles of structured analysis, design and development. It presents a systematic
algorithm, consisting of a set of coherent stages addressing the analysis, design and
development of spreadsheet models.

The main principle underpinning the proposed methodology has been derived from
data structure diagrams akin to those proposed by Jackson in Jackson Structured
Programming (Jackson-75, Ingevaldsson-86, Burgess-87). The methodology provides
models in a structured form, allowing indentation and all its concomitant advantages
in terms of comprehension and maintenance. It therefore enables improved integrity
control of spreadsheet models, facilitating understanding and interpretation of the
models in a standard and unambiguous manner. As a result of the structure and strict

discipline introduced in the process of spreadsheet building, the occurrence of user-
generated errors can be reduced.

In addition to that, the methodology has been tested on a wide spectrum of
spreadsheet errors for its effect on quality. The various features of the proposed
methodology are also tested on a wide range of spreadsheet models and users in
academia. The results have demonstrated that the methodology is indeed effective in
producing spreadsheet models that are more comprehensible and less prone to user-
generated errors. In conclusion, the research has contributed significantly to the
provision of additional knowledge and novel methods to the area of integrity control
of spreadsheet models.

1.3 Outline of the Thesis

Chapter 1 of this dissertation provides an overview, and outlines the contributions
made in this research programme. The chapter also includes a development story,
time-line and chronology of publications produced. The last section gives details of
the research approaches considered and adopted.

Chapter 2 presents an insight into spreadsheets and describes the problem of user-
generated spreadsheet errors in terms of their frequency and impact. It also distinctly
establishes the magnitude of the phenomenon of spreadsheet errors. At the end of the
chapter, the importance of applying software engineering and structured methods to
spreadsheet development is discussed.

Chapter 3 presents a framework for classifying user-generated spreadsheet errors
based on a rational taxonomic scheme. The spreadsheet error taxonomy is produced
by analysing the nature and characteristics of the different types and categories of
errors. The various types of spreadsheet errors are described and appropriate examples
are given.

Chapter 4 presents a review of a spectrum of existing tools and techniques for
controlling the integrity of spreadsheet models. An analysis of the effectiveness and
limitations of these techniques and methods is also carried out. Various life cycles and
methodologies proposed for the development of spreadsheet models are also critically
explored.

Chapter 5 presents findings of a preliminary investigation carried out into various
methods and approaches that are deemed to have some potential in improving the
quality of spreadsheet models. The core of this chapter is presented in the third
section, Section 5.3. The second section concerns an analysis of spreadsheet structure.

Chapter 6 conveys an insight into related software engineering concepts and
principles, especially Jackson Structures. This is in view of the fact that the main
techniques and principles of the proposed structured methodology are derived from
these methods and techniques. The discussion primarily covers the rationale for the
selection of Jackson structural forms and the concepts, notations and rules of Jackson
structures. This is followed by a discussion of the other relevant software engineering
principles and their application to spreadsheets.

10

Chapter 7 presents the proposed structured methodology for the development and
integrity control of spreadsheet models. It focuses on the synthesis of a framework or
methodology based on the established software engineering principles and structured
techniques described in Chapter 6. The various stages of the methodology are
described in detail and supported by suitable examples. The methodology's potential
for enhancing the quality of spreadsheet models is also addressed.

Chapter 8 begins by putting forth a plan for the evaluation of the proposed
methodology based on experimental trials. The evaluation strategies underpinning the
experiments are also discussed. The actual experiments conducted are subsequently
described in detail. The experiments are aimed at testing the various features of the
proposed structured methodology. The series of experiments involve a range of
spreadsheet models used in educational institutions and industry. The elements of the
methodology are tested on diverse groups of students.

Chapter 9 presents a detailed analysis of the results of the experiments conducted.
The experiments are described in Chapter 8.

Chapter 10 presents the conclusions drawn based on the results of the experiments
and from the doctoral research programme as a whole. The principal contributions of
the research project are presented. The degree to which the objectives of the research
have been achieved is also established. At the end of the chapter, future work to be
undertaken is proposed.

1.4 Time-line of Developments

At the outset of the programme, the primary and secondary research questions to be
answered were determined and specified (Chapter 7).

The research began with an investigation of the evolution and functions of
spreadsheets, and the problem of user-generated spreadsheet errors in terms of their
frequency and impact. The views and recommendations of authors and researchers on
the subject were considered to identify possible causes and potential approaches to
solving the problem (Chapter 2).

Having established the frequency and impact of spreadsheet errors, efforts were
concentrated on two sets of activities that were undertaken in parallel. These activities
were as follows:
 The examination and classification of specific types of user-generated spreadsheet

errors based on a rational taxonomic scheme (Chapter 3). This was carried out so
that the effects of improvements in methodology could be studied with regard to
error types.

 A review of existing tools and techniques for controlling the integrity of
spreadsheet models and the different life cycles and methodologies proposed for
their development (Chapter 4).

Upon completion of these activities, an investigation was carried out into various
methods and approaches that were deemed capable of improving the quality of

11

spreadsheet models. The development of these initial methods and approaches was
preceded by an analysis of spreadsheet structure (Chapter 5).

The next activity in the research programme was an elaborate examination of relevant
software engineering methods and structured techniques, and their potential
application to the design and development of spreadsheet models. The principal
method focused upon was the use of Jackson Structures due to its capacity to model
data dependencies, relative simplicity and likely acceptance in the spreadsheet
community (Chapter 6).

Based on the software engineering methods and techniques investigated, a
comprehensive structured methodology for the construction and integrity control of
spreadsheet models was developed. Various spreadsheet models were used to assess
the quality and effectiveness of the methodology (Chapter 7).

After the development of the proposed structured methodology, a plan was created for
the evaluation of the methodology based on experimental trials. Various factors such
as evaluation strategies, subjects, test models and other constraints were carefully
taken into account. Following the development of the plan, the experiments were
carried out accordingly (Chapter 8}.

Various techniques and methods were subsequently employed to meticulously analyse
the results of the experiments. Appropriate conclusions were drawn based on the
results (Chapter 9).

Finally, overall conclusions were drawn based on the entire research programme, and
appropriate recommendations were made pertaining to future work that can be
undertaken (Chapter 10).

The following is a chronology of publications produced during the course of the
research programme:

and Chadwick, D. (1998) "Integrity control of spreadsheets:
organisation & tools". In: Jajodia, S., List, W., McGregor, G.W. and Strous, L.
(eds) (1998) Integrity and internal control in information systems. Massachusetts:
Kluwer Academic Publishers, pp. 147-168.

Chadwick, D., Knight, B. and Edwards, D. (1999) "An
approach to improving the quality of spreadsheet models". In: Hawkins, C., King,
G., Ross, M. and Staples, G. (eds) (1999) Software quality management VII -
managing quality. Great Britain: British Computer Society, pp. 117-131.

 Chadwick, D., Knight, B. and Edwards, D. (1999) "A
methodology for spreadsheet development based on data structure", CMS Press,
99/IM/50.

12

Chadwick, D., Knight, B. and Edwards, D. (1999) "An
approach to the teaching of spreadsheets using software engineering concepts",
Proceedings of the Fourth International Conference on Software Process
Improvement, Research, Education and Training, INSPIRE"99, 9-11 September
1999, Crete, Greece. Great Britain: British Computer Society, pp. 261-273.

Chadwick, D., Knight, B. and Edwards, D. (1999) "Efficient
methods for checking integrity: an integrated spreadsheet engineering
methodology (ISEM)". In: van Biene-Hershey, M.E. and Strous, L. (eds) (1999)
Integrity and internal control in information systems - strategic views on the need
for control. Massachusetts: Kluwer Academic Publishers, pp. 41-58.

Chadwick, D., Knight, B. and Edwards, D. (2000) "Quality
control in spreadsheets: a software engineering-based approach to spreadsheet
development". In: Sprague, R.H., Jr. (ed.) (2000) Proceedings of the Thirty-Third
Annual Hawaii International Conference on System Sciences 2000 - abstracts and
CD-ROM of full papers. California: IEEE Computer Society.

Chadwick, D., Knight, B. and (2000) "Quality control in
spreadsheets: a visual approach using color codings to reduce errors in formulae",
Software Quality Journal, 9(2), pp. 133-143.

Knight, B., Chadwick, D. and (2000) "A structured
methodology for spreadsheet modelling". In: Chadwick, D. (ed.) (2000) EuSpRIG
2000 Symposium proceedings - spreadsheet risks, audit and development methods.
London: University of Greenwich, pp. 43-50.

Chadwick, D. and Knight, B. (2000) "Classification of
spreadsheet errors", British Computer Society (BCS) Computer Audit Specialist
Group (CASG) Journal, 10(4), pp. 5-10.

Chadwick, D. and Knight, B. (2001) "An evaluation of the
quality of a structured spreadsheet development methodology". In: Chadwick, D.
and Strous, L. (eds) (2001) Controlling the subversive spreadsheet - risks, audit
and development methods. The Netherlands: EuSpRIG, pp. 39-59.

Chadwick, D. and Knight, B. (2002) "Efficient methods for
checking integrity: a structured spreadsheet engineering methodology",
Informatica: An International Journal of Computing and Informatics, 26(1).

13

1.5 Research Approaches

The research methodology adopted for this work may be summarised by the following
steps:

1. Obtain an understanding of the problem domain.
2. Make a comprehensive study of what had already been done by others.
3. Synthesise possible high-level solutions.
4. Select the most promising high level solution.
5. Elaborate the chosen solution.
6. Test the efficacy of the solution.

To obtain an understanding of the problem domain, several resources were used.
These were published literature, interviews with modellers and attendances at a
spreadsheet modelling training course and spreadsheet conferences. Among the main
conferences were the 1FIP TC11 WG11.5 Working Conferences on Integrity and
Internal Control in Information Systems, International Conferences on Software
Quality Management organised by the British Computer Society, International
Conferences on Software Process Improvement, Research, Education and Training
(INSPIRE), the Hawaii International Conferences on System Sciences and the Annual
European Spreadsheet Risks Interest Group (EuSpRIG) Spreadsheet Symposiums.

In order to gain an insight into what had already been done on the subject of integrity
control of spreadsheet models and spreadsheet development, a thorough review of
existing literature was deemed to be the most appropriate approach. The material
reviewed included books, journal papers, conference proceedings and articles in other
publications. Interviews and face-to-face meetings were considered very important in
a research of this nature. Engaging in such interviews and meetings could provide a
direct insight into the various aspects of the research, especially the phenomenon of
spreadsheet errors and existing tools, techniques and methods used to control the
integrity of spreadsheet models. In order to effectively benefit from the use of this
research method, the people to be interviewed were carefully chosen. Interviews,
meetings and discussions were subsequently held with researchers on the subject,
spreadsheet users in academia and industry, people involved in the auditing of
spreadsheet models, facilitators of training in spreadsheet modelling and developers of
tools for spreadsheet auditing and quality control.

High-level solutions were generated by examining all existing software engineering
methodologies, and examining their applicability to the current problem. Pros and
Cons of each methodology were presented to the supervisory team, and a favoured
candidate emerged (Jackson Structures).

The selected methodology was elaborated in logical mode and tried out on some
standard business models. These were obtained from standard texts, and from
industrial users.

The testing for efficacy was carried out on real users who were students attending
courses where the researcher was lecturing. These users were used for trials, in view
of the need for statistical significance. This was preceded and guided by research into
relevant past experiments.

14

CHAPTER 2
BACKGROUND

2.1 Introduction

The primary and secondary research questions to be answered by this doctoral
research programme were identified and specified in Chapter 1. In order to begin
addressing these research questions, an investigation was undertaken into the
evolution and functions of spreadsheets, and the problem of user-generated
spreadsheet errors in terms of their frequency and impact. The views and
recommendations of authors and researchers on the subject were subsequently
explored to identify possible causes and potential approaches to solving the problem.

This chapter begins by presenting the results of the investigation into the evolution,
functions and benefits of spreadsheets. This is followed by a discussion of the
phenomenon of user-generated spreadsheet errors. The different aspects of the
problem addressed are the trends in spreadsheet errors, the frequency of the errors,
and their real-life impact and consequences. The views and recommendations of
authors and researchers on the subject are subsequently presented. This also involves
a discussion of the need to adopt software engineering and structured methods in
spreadsheet development.

2.2 An Insight into Spreadsheets

Prior to the investigation of spreadsheet errors, it is appropriate to gain a basic
understanding of spreadsheets as well as their evolution in recent years. Spreadsheet
programs attained widespread use since the development of the first electronic
spreadsheet package, VisiCalc, in 1979 (Brown-87). After the creation of VisiCalc,
Lotus 1-2-3 was built for the IBM PC, followed by Microsoft Excel, which is
presently used on the Windows platform (Butler-97).

The spreadsheet provides a large matrix of rows and columns. Each column is
assigned unique letters while each row is identified by a distinct number. Users
organise parameters, variables, formulae and components of the spreadsheet model
within this framework (Nardi-90). The intersection of a row and column defines a
cell. A cell can contain a numeric constant, label or formula. According to Ronen et al
(Ronen-89), the tremendous power of spreadsheets is attributable to its ability to relate
cells with formulae.

The underlying formula of a cell is not readily visible to the user. It is only the
numeric result of the calculation defined by the formula, which is displayed (Brown-
87). Formulae perform calculations on absolute values and references to other cells,
represented by the corresponding cell addresses. Users can model problems in a
spreadsheet and easily automate the calculation of large complex systems using cell
formulae (Igarashi-98). When Lotus 1-2-3 was developed in 1983, macros were
added. Creeth (Creeth-85) defines a macro as a single computer instruction that stands

15

for a sequence of operations. Macros further enhanced the functionality of
spreadsheets.

Igarashi et al (Igarashi-98) state that spreadsheets are one of the most successful
applications making use of visual language techniques, and have the capacity to
display and manipulate complex information in tabular form. With the advent of
spreadsheets, end-users in business could more easily computerise laborious and
time-consuming custom calculations that were needed for a wide range of commercial
activities (Butler-97). Bodily (Bodily-86) believes that an important function of the
electronic spreadsheet is its ability to support wto-//analyses of all kinds.

Olsen and Nilsen (Olson-87-88) have described three major advantages offered by
spreadsheets. First, the spreadsheet can be easily edited. Second, the values of certain
cells can be automatically calculated from the contents of other cells by using
formulae. The third advantage is the ability to copy a formula from one cell to another
while keeping constant the relative location of cells that are referenced.

Spreadsheet based systems are an important part of end-user computing (Cragg-92).
They are used for a wide variety of applications. Ronen et al (Ronen-89) believe that
the most frequent use of spreadsheets is for decision support and personal
productivity. They, however, also state that many spreadsheet applications can in fact
be regarded as mainstream information systems applications.

It is important to have an understanding of the different roles taken on by people
involved in a spreadsheet project. The number of people needed to carry out a
particular role is mainly dependent on the size and complexity of the spreadsheet
model. Read and Batson (Read-99) define various roles in spreadsheet model
development and use. The model sponsor is the person who requests that the model be
built and ensures that the required resources are available. Agreement of the
objectives of the model is the responsibility of the model sponsor. The model
developer translates the sponsor's requirements into the actual spreadsheet model. The
model that has been built will have at least one user. The sponsor and developer of the
model may also be its users. The reviewer is the person who tests the spreadsheet
(Read-99).

2.3 The Phenomenon of Spreadsheet Errors

Numerous publications have recently demonstrated the seriousness of user-generated
spreadsheet errors and their adverse consequences or potential impact on businesses.
There is substantial anecdotal evidence suggesting that end-user developed
spreadsheets can be considered unreliable, inflexible, unmaintainable, and
unmanageable (Benham-93). According to Ray Butler of HM Customs and Excise
(United Kingdom), even in a domain such as indirect taxation, which involves
relatively simple calculations and well-documented calculation rules, spreadsheet
models are prone to errors, despite relatively high domain knowledge by developers
(Chadwick-OOb).

According to Ronen et al (Ronen-89), spreadsheet packages have extended computing
to vast numbers of individuals. They argue that for many users, the spreadsheet

16

program represents their first experience with programming and documentation.
Ronen et al (Ronen-89) state that in general, these users have not been trained in
systems analysis and tend to overlook the concerns of the professional systems analyst
in designing a system. The practitioner literature has discussed a number of problems
with spreadsheet construction (Ronen-89).

The phenomenon and magnitude of spreadsheet errors can be viewed from three
different perspectives (Rajalingham-99). They are as follows:
 frequency of the errors
 impact and real-life consequences of spreadsheet errors
 types and classes of specific errors

The first two aspects of the problem of spreadsheet errors are discussed in this chapter
while the third is analysed and presented in the next chapter, Chapter 3: Analysis and
Classification of Spreadsheet Errors.

2.3.1 Overview of Trends in Spreadsheet Errors

There is more than sufficient evidence from various reliable sources that the problem
of spreadsheet errors has been experienced for decades. This also appears to be the
situation today despite the advent of various tools and techniques for controlling the
integrity of spreadsheet models.

In 1998, research carried out by Pricewaterhouse Coopers revealed that there was a
trend of increasing spreadsheet model size and complexity (Whittaker-99). Whittaker
argues that the trend towards larger model size and complexity is clear, and there is
every possibility that this trend will continue in future. A conclusion that can be
drawn from this statement is that the frequency of spreadsheet errors is steadily
increasing as in general, the number of errors is proportionate to the spreadsheet
model size and complexity.

Another factor that influences the escalating frequency of spreadsheet errors is the
speed and simplicity of building spreadsheet models. Howitt (Howitt-85) believes that
spreadsheets create the opportunity to make more mistakes and multiply them rapidly
due to the speed and simplicity of spreadsheet application development. This indicates
that with the increasing use of spreadsheets over the years, users have been making
more errors and quickly multiplying them.

There is extensive material clearly indicating an increasing use of spreadsheets,
resulting in a proportional increase in the frequency of spreadsheet errors. According
to Carlsson (Carlsson-89), in business, spreadsheet programs have become one of the
most frequently purchased and used personal computer programs. Isakowitz et al
(Isakowitz-95) state that there has been increasing sophistication and power of
commercial spreadsheet packages. They believe that spreadsheet programs have
transformed the concept of end-user computing, creating a new computational
paradigm that offers a unique combination of ease of use and unprecedented
modelling power. This has encouraged the widespread use of spreadsheets in business

17

and resulted in spreadsheet programs becoming the most popular decision support tool
in modern business (Isakowitz-95).

Ray Butler of HM Customs and Excise, United Kingdom (Butler-97) states that
spreadsheets are among the most dangerous and error-prone development platforms.
The figures on the frequency of user-generated spreadsheet errors are truly astounding
and indicate a high probability of imminent disaster scenarios around the world
(Chadwick-OOb). An important conclusion that can be drawn on the trends in
spreadsheet errors is that with the profound increase in the production and use of
spreadsheet models over the years, the frequency and impact of the errors have also
steadily increased.

2.3.2 Frequency of User-generated Spreadsheet Errors

There have been various publications containing information on the frequency of
spreadsheet errors. Despite the widespread use of spreadsheets, there has been
extensive anecdotal and experimental evidence that electronic spreadsheets are highly
susceptible to user-generated errors (Brown-87). Although electronic spreadsheets are
immensely beneficial to accountants and financial analysts, they may have a
disastrous impact on critical business decisions (Hayen-89). After a thorough review
of relevant literature, various cases have been selected and presented in this section to
demonstrate the appalling frequency of user-generated spreadsheet errors.

Based on the results of an experiment, Brown and Gould (Brown-87) concluded that
even a substantial percentage of spreadsheets created by experienced spreadsheet
users contained one or more errors. According to Freeman (Freeman-96), Coopers and
Lybrand (London), reported that over 90% of all spreadsheets they had examined,
with more than 150 rows, contained at least one significant formula error. This is an
extremely high figure and if the errors had gone undetected, they could have had a
devastating effect on the business.

An article in New Scientist (Ward-97) has reported that a decade's worth of research
findings of Professor Raymond Panko at the University of Hawaii revealed that
spreadsheets had a dangerously high rate of errors. It appears that on average, 30% of
spreadsheets contain errors, many of which are serious. According to Professor
Panko, the problem is that spreadsheets demand a level of accuracy that people find
difficult to manage.

A financial model review by KPMG Management Consulting, London (KPMG-97)
stated that in 95% of the financial models audited, at least 5 errors had been found.
The review also revealed alarming statistics concerning defects and flaws in the
spreadsheet development process, addressing the project management, technical and
analysis aspects. An audit of spreadsheets from over 21 major UK banking and
financial organisations revealed that 92% of the spreadsheets dealing with tax issues
had significant errors while 75% had significant accounting errors (KPMG-98b).

An excellent compilation of studies on the frequency of spreadsheet errors has been
produced by Panko and Halverson (Panko-96,98,00). The findings are presented in
Appendix A.

18

There is also substantial anecdotal evidence from the commercial sector, of the high
frequency of user-generated errors in spreadsheet models. A selection of the relevant
cases is presented below in chronological order of publication.

 Creeth (Creeth-85) has stated that according to industry experts, one out of every
three spreadsheet printouts contains errors.

 An article from Personal Computing (Ditlea-87) reported that a Houston
consultant with Price Waterhouse had found 128 errors in 4 spreadsheet models
that had already been in use for months.

 Estimates from the trade press on the number of spreadsheets that contain errors
range from 20 to 40 percent (Brown-87).

 According to Davies & Ikin (Davies-87), out of 19 worksheets (from 10 different
firms) audited, 4 (21%) had serious errors, while 13 were considered to have
inadequate documentation, and 10 did not use cell protection.

 Roberts (Roberts-88) found one or more errors in 80% of spreadsheet models
audited.

 In an inspection of 20 operational models of 10 firms, errors were found in at least
25% of the models. Apart from that, other problems were also found (Cragg-93).

 In an Australian mining firm, an audit found that 30% of the spreadsheets audited
had been corrupted because cell protection had not been used, and users typed
numbers into formula cells (Dent-95).

2.3.3 Impact and Consequences of User-generated Errors

Spreadsheet errors can be devastating because the data is often the foundation on
which many organisations make critical decisions (Freeman-96). It is important to
examine the adverse consequences of the problem of spreadsheet errors in real life.
This enables a distinct comprehension of the magnitude of the problem and an
assessment of the seriousness of the situation.

The information presented in this section has been obtained from numerous
publications. It must however be noted that these are based only on reported cases. It
is believed that there are many other similar cases that have not been brought to public
attention due to fear that it might adversely affect the reputation of the organisation
involved.

There are publications from more than a decade ago with clear indications that user-
generated spreadsheet errors have caused serious disruption of business. Although
these cases are not based on formal research, they do show that spreadsheet errors
were considered important enough to be reported in the general business and
computing press.

19

A subset of significant reported cases is provided below in chronological order of
publication.

 According to an article in Business Week (Business Week-84), a Midwestern
firm's estimated taxes had been $5,000 off due to an incorrect formula for
assessing salvage value in the spreadsheet.

 The article (Business Week-84) has also stated that in the forecast for a new
product, the forecast sales was $8 million over. Fortunately, it was detected in
time to prevent any serious damage.

 In another case (Business Week-84), a person ordered 30,000 units at $4 each, but
the plan had changed and the company only needed 1500. Quite a lot of money
was therefore tied up in excess stock.

 Two spreadsheets with 15,000 cells were used to project the market for CAD
equipment. The numbers were rounded off to whole dollars and even the inflation
multiplier, which should have been 1.06 was rounded off to 1. Consequently, the
market was underestimated by $36 million (Business Week-84).

 A Dallas-based oil and gas company fired several executives for spreadsheet
model oversights that cost the company millions of dollars (Freeman-86).

 Work by Ditlea (Ditlea-87) published in Personal Computing, offer several cases
showing the adverse impact of spreadsheet errors on businesses. The controller of
James A. Cummings, Inc., a Florida construction company, was putting together a
Symphony spreadsheet model to bid on a $3 million office complex. His formula
to calculate the bid did not include a figure of $254,000 for overhead costs that he
had later inserted at the top of a column of figures. This entry fell outside the
range of numbers to be added by the @SUM ("SUM in MS Excel) function in his
formula. The undetected error resulted in a loss for the company when the bid was
won (Simkin-87).

 In another case (Simkin-87), a consultant called Larry Nipon found an error that
would have cost $1.5 million had it gone unchecked. The error was actually
identified by Cambridge Spreadsheet Analyst, a spreadsheet auditing program.

 Davies and Ikin (Davies-87) have found that out of 19 operational models audited
from 10 different firms, 4 (21%) had serious errors, including a $7 million error in
interdivisional transfers, different exchange rates for Australian dollars in the
same time period, and a negative balance for stock on hand. The effect errors like
these can have on the company is simply unimaginable.

 According to Woodbury G G (Woodbury-89), in a North Carolina election, results
of the election were about to be incorrectly posted. Mr Woodbury, using a
calculator, detected an inconsistency. Examination found an incorrect cross-
tabulation in the spreadsheet being used to post the results.

20

The following are three of the more recently reported cases:

 Dhebar (Dhebar-93) reported that a firm called Fortune 500 used discounted cash
flows to evaluate investment proposals and an important figure was not updated
for 8 years. The formula and discount rate had apparently been established long
ago, were never documented and made by a person who had left the company.
Although the prime rate rose from 8% to over 20% between 1973 and 1981, the
spreadsheet was kept at 8%. This is potentially detrimental to the business.

 At Fidelity, a spreadsheet was used to report distributions for various funds. For
the huge Magellan fund, a $4.32 per share capital gains distributions was forecast
in November, and investors were notified. However in December the company
announced there would be no distribution. A clerical worker put the wrong sign in
front of a $1.2 billion ledger entry. This "created" a $2.3 billion gain in place of
the real $0.1 billion loss. This may have affected buyers, some of whom may have
sold to avoid the distribution and missed a price rise, others of whom may have
waited to buy to avoid the distribution and also missed the price rise (Savitz-94).

 According to an article in New Scientist (Ward-97), a study by the Computer
Audit Unit of HM Customs and Excise (UK) found that as a result of errors,
spreadsheets were out by amounts ranging from a few hundred pounds to millions
of pounds. These errors were made by people when filling in computer
spreadsheets used by companies to keep track of their cash.

These reports demonstrate that the occurrence of user-generated spreadsheet errors is
indeed a critical problem for businesses and requires immediate attention. If this
situation prevails, organisations will, inevitably, be suffering great financial losses as
a result of incorrect decisions made based on their erroneous and unreliable
spreadsheet models.

2.4 Need for a Disciplined and Structured Approach

Spreadsheet models are increasingly being used in decision-making within
organisations (Cragg-93). However, much past research and published reports have
firmly established that there is no unified approach to spreadsheet development in
industry. Spreadsheet development can, in many ways, be compared to the days of
main-line software development before the advances due to structured programming,
analysis and design. Isakowitz et al (Isakowitz-95) state that in spite of the increasing
sophistication and power of commercial spreadsheet packages, there is still a lack of a
formal theory or methodology to support the development and maintenance of
spreadsheet models.

Findings from research carried out over several years have revealed the need for a
new approach or discipline for spreadsheet development. This is evident from the
constant call for a new structured approach, in many recent publications. Studies have
also discovered a general lack of policies on spreadsheet development. A collection of
these studies have been organised and presented by Panko and Halverson (Panko-96).
This can be found in Appendix B. Hall (Hall-96) argues that with the high probability

21

of the occurrence of spreadsheet errors, there is an obvious need for some formalised
control policy in the spreadsheet development process.

Panko and Halverson (Panko-96) state that surveys of spreadsheet development have
revealed that strict development disciplines have not been followed in spreadsheet
development, as they are in conventional programming. They also indicate that the
process of building spreadsheet models has been largely informal and emphasise on
the need to adopt programming disciplines in order to deal with complex
spreadsheets. Panko and Halverson also point out the fact that there is an obvious
need to adopt traditional programming disciplines due to the similarity between
spreadsheet and programming errors.

Spreadsheet applications are more vulnerable to poor design and errors compared to
conventional programs, as many spreadsheet users have not been trained in systems
analysis and software engineering (Davis-96). Benham et al (Benham-93) propose the
adoption of the techniques of structured analysis, design and programming to
spreadsheets, in order to enhance the quality of the applications. Their reason is that
such structured techniques were developed to address the shortcomings of early data
processing systems. Howitt (Howitt-85) states that users' failure to employ a
consistent and thorough design methodology is due to the speed and simplicity of
spreadsheet model development.

According to the publications by Davies and Ikin (Davies-87) and Cragg and King
(Cragg-93), spreadsheet development, in most cases, has been found to be very
informal and lacking in the use of important development disciplines. David Finch,
Head of Internal Audit at Superdrug pic (United Kingdom) believes that there is often
inadequate control and standardisation in the process of spreadsheet development by
end-users in different departments (Chadwick-OOb). Creeth (Creeth-85) has called for
quality control over the use of spreadsheet models.

An investigation carried out into the spreadsheet practices in ten firms revealed that
spreadsheet models were usually built in an informal, iterative manner, by people with
very little training (Cragg-93). This created an awareness of the need for increased
training as well as setting and enforcing organisational spreadsheet standards (Cragg-
93). According to Ray Butler (Butler-97), the problem with spreadsheet building is
that users do not regard spreadsheet models as computer programs requiring
specification, testing and documentation. Ray Butler believes that a reduction in the
risk of errors can be achieved by using a more formalised development and testing
methodology for spreadsheet applications (Chadwick-OOb).

Hendry and Green (Hendry-94) have pointed out that the great disadvantage of
spreadsheets is that it is so easy. They suggest that instead of creating the whole
spreadsheet first and then checking for errors, errors ought to be checked for at
various stages of the development process. They believe that this would enable the
detection and correction of errors without missing many. This strategy of stage-by-
stage component testing is a software engineering-based technique.

Ronen et al (Ronen-89) express concern over the lack of formal analysis or
documentation in spreadsheet development. They state that a structured approach to
spreadsheet design can help reduce the occurrence and seriousness of problems with

22

spreadsheets. According to Isakowitz et al (Isakowitz-95), a decrease in spreadsheet
errors can be achieved by adopting principles of structured methods from
software/system engineering. Kavanagh (Kavanagh-97) states that end-users are
putting their companies at risk by building spreadsheets without realising that this
demands the discipline of traditional programming.

Based on these studies and published reports, we can arrive at the firm conclusion that
the application of structured methods and the adoption of a disciplined approach
based on programming (or software engineering) principles in spreadsheet
development, is indeed imperative. This research programme investigates the
possibility of applying such methods in order to effectively address the phenomenon
of user-generated spreadsheet errors and enhance the integrity of spreadsheet models.

2.5 Summary

Spreadsheet programs have been in widespread use from the development of the first
electronic spreadsheet package, VisiCalc, in 1979, to the current windows-based
Microsoft Excel. The different roles in spreadsheet modelling include the model
sponsor, the model developer, the user and the reviewer. There are three important
perspectives to the phenomenon of spreadsheet errors. They are the frequency of the
errors, the real-life consequences of spreadsheet errors and the types and classes of
specific errors.

An important conclusion that can be drawn on the trends in spreadsheet errors is that
with the profound increase in the production and use of spreadsheet models over the
years, the frequency and impact of the errors have also steadily increased. Users have
been making more errors and quickly multiplying them.

It is evident from numerous publications that the frequency of user-generated
spreadsheet errors is indeed appallingly high. These publications contain extensive
anecdotal and experimental evidence of the vulnerability of spreadsheet models, from
both business and academia sources. This is further corroborated by research findings.

Numerous studies and audits have been carried out on the impact of user-generated
spreadsheet errors. These along with a huge collection of reported cases over two
decades, have clearly revealed the extent of damage that has been caused to
businesses, as well as potential future disruption.

Researchers on the problem of spreadsheet errors and authors of numerous relevant
publications have relentlessly stressed on the need for a new approach to spreadsheet
modelling. They have constantly recommended a structured and disciplined approach
to spreadsheet model development based on software engineering methods and
techniques.

23

CHAPTER 3
ANALYSIS AND CLASSIFICATION OF
SPREADSHEET ERRORS

3.1 Introduction

The previous chapter, Chapter 2, presented an insight into spreadsheets and described
the problem of user-generated spreadsheet errors in terms of their frequency and
impact. The importance of applying software engineering and structured methods to
spreadsheet development was also discussed. As mentioned in Chapter 2, the
phenomenon and magnitude of spreadsheet errors can be viewed from three distinct
perspectives. The first two perspectives were addressed in Chapter 2 by investigating
the frequency and real-life consequences of spreadsheet errors. This chapter focuses
on the third perspective, the types and classes of specific errors.

A thorough review of literature concerning spreadsheet development and the relevant
integrity issues, has revealed a significant deficiency. Very little research has been
devoted to the study and examination of specific errors that occur in spreadsheet
models. Therefore, an analysis of specific types of errors has been conducted as a
precursor to the development of strategies and solutions to deal with the problem
effectively.

There are numerous types of user-generated spreadsheet errors, with different
characteristics and attributes. As such, an essential and integral part of the analysis of
specific types of spreadsheet errors would be to develop a classification of these
errors. This chapter presents a more comprehensive classification or taxonomy of
spreadsheet errors than ever presented or published before, following a meticulous
analysis of specific types of user-generated spreadsheet errors from a wide variety of
sources. The classification is based on a rational taxonomic scheme and is supported
by a selection of generic and specific examples. The spreadsheet error taxonomy is
produced by analysing the nature and characteristics of the different types and
categories of specific errors. Earlier versions of the taxonomy have been published
(Rajalingham-98, 99, 99a, 00, OOa, OOb). The classification facilitates more effective
comprehension of the different types of spreadsheet errors.

3.2 The Concept of Taxonomy or Classification

In a broad sense, taxonomy is the science of classification, though more strictly, it
refers to the classification of living and extinct organisms. The term is derived from
the Greek taxis ("arrangement") and nomos ("law"). It is important to note, however,
that there is no special theory which lies behind modern taxonomic methods. In
attempting to define taxonomy within the context of spreadsheet errors, it would be
appropriate to investigate the definition of this term in other fields of study. In
biology, taxonomy refers to the establishment of a hierarchical system of categories on
the basis of presumed natural relationships among organisms. The goal of classifying
is to place an organism into an already existing group or to create a new group for it,

24

based on its resemblances to and differences from known forms. To this end, a
hierarchy of categories is recognised (Britannica.com-99-00).

Based on the definitions borrowed from other disciplines, we can extend the concept
of taxonomy to the classification of spreadsheet errors. For our purposes, the
spreadsheet error taxonomy can be defined as a hierarchical system of classes of
spreadsheet errors on the basis of common characteristics and relationships.

3.3 Rationale for the Classification of Spreadsheet Errors

There are various reasons for developing a classification of spreadsheet errors. The
most important purpose of creating a taxonomy is that it is a methodical approach to
problem analysis. The analysis of the different types of errors based on this approach
is likely to improve comprehensive testing of a spreadsheet development
methodology. The development of a taxonomy of spreadsheet errors also forces us to
gain a deeper understanding of the characteristics of an error as well as the nature of
its occurrence. A comparison can also be made with other related errors belonging to
the same category.

An insight into the features and nature of an error is of paramount importance, in
order to prevent the occurrence of the error or develop a method of detecting its
presence. The classification of spreadsheet errors would inevitably involve an
identification of similar characteristics and properties between certain errors. This can
be used as a basis for developing similar approaches to address spreadsheet errors
within the same category or taxonomic group. Knowledge of the characteristics of an
error also enables analysis of its potential impact and frequency. It is highly probable
that other errors in the same category would have the same degree of seriousness.

3.4 Derivation of the Taxonomic S cheme

This section discusses the factors and approaches that have been considered in the
development of the taxonomy. As indicated earlier, there is no special theory which
lies behind modern taxonomic methods. As such, an investigation had to be carried
out into the taxonomic methods used in other fields. These methods of classification
have been widely employed in the fields of zoology and botany.

Based on the principles of classification adopted in zoology and botany
(Britannica.com-99-00), spreadsheet errors can be classified using a similar
taxonomic scheme. The process of classification consists of the following steps:

 A specific type and example of a spreadsheet error is obtained.

 The error is compared with the known range of variation of spreadsheet errors.

 The error is correctly identified if it has been described, or a description showing
similarities to and differences from known categories, is prepared. If the error is of
a new type, it is assigned to a new category or class.

25

 The best position for the error is determined in the existing classification. This
may also involve determining what revision the classification requires as a
consequence of the new discovery.

 Available evidence is used to further suggest and describe the nature of the error,
its possible cause(s) and other characteristics. In order to do carry out these tasks,
there has to be in place a recognised system of ranks in classifying, recognised
rules, and a procedure for verification, irrespective of the group being examined.

It is clear from the last step that the process of spreadsheet error classification requires
a recognised system of ranks, rules and a verification procedure. An investigation of a
taxonomic method that addresses these requirements revealed that there are two
possible approaches to structuring the ranks within a taxonomy. Its system of ranks
can either be based on a binary approach or a bushy approach.

The bushy approach was initially adopted and assessed. This method involves a top-
down approach that produces a hierarchical taxonomy. A category at any level or rank
can be divided into two or more classes. These categories are created as a result of
studying the nature and characteristics of the errors. An example of an earlier version
of the proposed taxonomy using the bushy approach is shown in Figure 3.1
(Rajalingham-99, 99a, 00, Chadwick-99).

%nUifattEmn

Ftnuaffaf
Ems Erne

tmv

Dah

Taxonomy Using a Bushy Approach

The bushy taxonomic structure shown in Figure 3.1 was found to have certain
limitations. It was difficult to navigate down the taxonomic tree to assign a specific
error to a class. With certain errors, it was also possible to place them in two or more
different classes. This could potentially lead to an ambiguous interpretation of an
error.

26

In order to address these limitations, the alternative binary approach was considered
and assessed. Like the bushy structure, this method is also based on a top-down
approach, resulting in a hierarchical taxonomy. However, at each stage of the
taxonomy, the binary approach uses dichotomies or divisions into two mutually
exclusive (non-overlapping) groups, to classify the errors. This eliminates the
possibility of positioning the same type of error in different parts of the taxonomy and
causing an overlap of the different categories of spreadsheet errors.

This feature of the binary approach enables a far more straight-forward way of
assigning a specific error to a taxonomic class. A simple IF-THEN-ELSE rule or
constraint can be used to navigate down the taxonomy tree and position errors in
appropriate classes. This is demonstrated in the next section. Furthermore, as a rule, at
each stage where a dichotomy is produced, only a single factor, representing a distinct
aspect of the error is used. This reduces ambiguity of class definition at each rank.

To this end, the following aspects of a particular type of spreadsheet error are
analysed:

(i) Manifestation of the error
(ii) Cause of the error
(iii) The role of the person responsible for the error
(iv) The cognitive state of the person responsible for the error
(v) The stage of the spreadsheet building life cycle where the error occurs
(vi) The relevant view of the spreadsheet model system

In view of the advantages of the binary method compared to the bushy method, the
binary approach has been adopted as the basis of a rational taxonomic scheme for
classifying spreadsheet errors. The taxonomic scheme also involves the conventional
process of classification (as used in zoology and botany) and an analysis of the nature,
properties and characteristics of spreadsheet errors.

3.5 The Classification of Spreadsheet Errors

An important point to be clarified at this stage is that the classification is confined to
only user-generated spreadsheet errors., as opposed to system or software-generated
errors. The issue of detecting or correcting flaws in the spreadsheet software is
beyond the scope of this research. User-generated errors can be defined as errors (or
potential errors) produced or caused by the developer(s) or end-users of the
spreadsheet model and can therefore be controlled or prevented by them.

Whenever, the term error is used in this thesis, it should be noted that it has a broader
definition encompassing both actual errors and potential errors. The errors include
flaws, slips and mistakes. Slips are errors that occur when the intention to act fits the
intended goal but the action is not carried out according to plan. Mistakes, on the
other hand, are errors that occur when an action is carried out as intended but the
action itself is not appropriate to the task (Chadwick-97).

It is also appropriate to state at this juncture that in the process of classifying certain
specific errors, assumptions had to be made about the precise cause of the errors,

27

where this is not clearly indicated by the source. It is possible for the same error to be
assigned to a different category, should the actual cause not match the assumed cause.

Figure 3.2 displays a comprehensive classification of user-generated spreadsheet
errors. At the highest level, spreadsheet errors can be divided into two major
categories, namely qualitative errors and quantitative errors. The classification factor
used at this stage is the manifestation of the error. Panko and Halverson (Panko-96)
have also broadly classified spreadsheet errors as being either quantitative or
qualitative.

By examining the manifestation of a specific type of spreadsheet error, it can be
clearly determined whether it is quantitative or qualitative, but not both. Any error or
flaw which is not quantitative has to be qualitative. Therefore, spreadsheet errors can
be divided into two non-overlapping categories of quantitative and qualitative errors.
This can be expressed in a form identical to a structured program.

For all user-generated spreadsheet errors,

IF numerical error causing incorrect bottom-line value
THEN quantitative error
ELSE NOT quantitative error (i.e. qualitative error)

28

SPREADSHEET
ERRORS

Qualitative

Reasoning Temporal

Domain
Knowledge

Mathematical
Representation

3.2: Taxonomy of User-generated Spreadsheet Errors

29

3.5.1 Quantitative Errors

Quantitative errors are numerical errors that lead to incorrect bottom-line values
(Panko-96). They simply produce wrong data in the spreadsheet model. Based on an
analysis of the cause of the error, a dichotomy of accidental and reasoning errors can
be used to capture the different types of quantitative errors.

Any error or flaw which is quantitative and not accidental must have been produced
as a result of a mistake in reasoning and can therefore be considered to be a reasoning
error. Common sense would dictate that an error cannot be both accidental and caused
by a mistake in reasoning. Therefore, quantitative errors can be divided into two non-
overlapping categories of accidental and reasoning errors.

For all quantitative errors,

IF error is caused by negligence or carelessness
THEN accidental error
ELSE NOT accidental error (i.e. reasoning error)

It is important to state at this juncture that the dimension of fraud is not taken into
account when developing the classification framework for quantitative errors. This is
because any error can be deliberately produced with fraudulent or malicious intent
and disguised as an accidental or reasoning error, unless of course the criminal motive
is blatantly obvious as in this example:

A user rewrites a payroll equation as follows (Stang-87):

IF EMPLOYEEID = MINE
THEN PAYCHEQUEAMT = HOURS X RATE X 1.03
ELSE PAYCHEQUEAMT = HOURS X RATE.

1. Accidental Errors

Accidental Errors

30

Accidental errors are mistakes and slips caused by negligence, such as typographical
or pointing errors. Though quite frequently occurring, they have a high chance of
being spotted and corrected immediately by the person committing the error. Some,
however, do go undetected and could lead to incorrect values in the spreadsheet
model. After a close examination of various types of accidental errors, it has been
found that they can be further divided into two distinct categories. The taxonomic
factor used to achieve this is the user role responsible for the error. As such, an
accidental error can either be a structural error or a data input error.

Any user-generated error or flaw which is not produced by the model developer could
only have been caused by the end-user(s) of the model. Errors caused by end-users are
defined as data input errors as these errors occur when end-users insert, alter or
remove data in the models. The structures or templates of these models would have
already been constructed by the model developer. Based on this understanding of the
two distinct user roles, accidental errors can be divided into two non-overlapping
categories of structural and data input errors.

For all accidental errors,

IF error is caused by the model developer
THEN structural error
ELSE NOT structural error (i.e. data input)

Structural errors are errors produced by the developer of the spreadsheet model.
These errors are produced when creating or altering the structural or programmed
component of the spreadsheet model. Therefore, these errors can again be segregated
into two categories, namely, insertion and update errors. Though the structural
component of a spreadsheet model consists of schema and editorial sub-components
(described elaborately in Chapter 5), these errors primarily concern the schema of the
model. As the editorial parts of the model are mainly textual and not referenced by
any formulae, they do not produce numeric or bottom-line errors. As such they are not
classed as quantitative errors. They are in fact qualitative errors as these editorial
errors can degrade the quality of the model and distort its semantics.

Any developer-generated accidental error or flaw not produced while creating the
structural aspects of the spreadsheet model must have occurred while they are being
altered. This enables the disjointed division of accidental structural errors into
insertion and update errors.

31

For all structural errors,

IF error is produced when creating the structural aspects of the
spreadsheet model

THEN insertion error
ELSE NOT insertion error (i.e. update error)

(0

These errors occur while the developer is creating the structures of the spreadsheet
model. The model at this stage would be prone to accidental errors such as
typographical errors, pointing errors, duplication and omissions. As the activity is
carried out by the model developer, the cells affected would usually be formula cells.

Insertion Errors (Structural)

Example 1: Omissions

Omissions are key factors or variables that are left out of the model (Cragg-93), that
should be there. They often result from a misinterpretation of the situation. Human
factors research has shown that omission errors are especially dangerous, because
they have low detection rates (Panko-96). This is a problem which is at the heart of
any modelling exercise. KPMG (KPMG-98) reported that references were made to
worksheets that does not exist (Cragg-93).

Example 2: Pointing Errors

Pointing errors refer to errors caused by references being made to wrong cells or cells
in the wrong location. The model developer types the wrong cell coordinates in
composing the formula (Brown-87). As a result of carelessly entering incorrect cell or
range addresses into formulae, the formulae themselves produce incorrect results.
Pointing errors could therefore also manifest themselves in the form of references to
blank cells and non-numeric cells or cause the presence of figures that are not used.

32

KPMG (London) found that in a client model, a formula incorrectly referred to a
different range. Consequently, a monthly average was overstated by approximately
five minutes, but did not affect revenue (KPMG-98).

A common example of erroneous formulae involves incorrect range specification in
formulae. This occurred frequently with the use of functions that summed a range of
entries in a row or column (Cragg-93). Based on Figure 3.5 (Chadwick-97a), the
correct formula in is but the formula is entered
instead.

3.5: Example to Illustrate Pointing Error

Example 3: Circular Reference

Circular reference can be caused by an accidental error by the model developer as a
result of mistyping or a pointing error. With reference to Figure 3.6, an example of
this error would be the entry of the formula into cell D10 instead of

.
circular reference

Circular Reference

These errors occur while the developer is altering the structural or programmed
component of the spreadsheet model. The model at this stage would be prone to
accidental errors such as typing errors, overwriting and deletion.

For all structural update errors,

IF If error is produced as a result of incorrectly changing the
structural or programmed component of the model

THEN modification error
ELSE NOT modification error (i.e. deletion error)

Modification Errors

These errors occur as a consequence of incorrectly or inaccurately modifying the
structural or programmed component of the spreadsheet model. The trade press
indicates that modification of spreadsheets is a more error-prone task than the original
creation of spreadsheets (Brown-87). As the activity is also carried out by the model
developer, the cells affected would normally be formula cells.

3.7: Modification Errors (Structural)

Example 1: Formulae Overwritten with Data

Data is incorrectly entered into a cell previously containing a formula, overwriting the
formula and invalidating the model (Cragg-93). Hayen (Hayen-89) also points out this
error, stating that when data are entered, they may be entered on top of formulae and
wipe out the desired formula. This is a very common error made by the end-user
during data entry. A simple solution to the problem would be to use cell protection.

Quoting a real-life example, in an Australian mining firm, an audit found that 30% of
the spreadsheets audited had been corrupted because cell protection had not been
used, and users typed numbers into formula cells (Dent-95).

Any user capable of making a typing mistake is also capable of entering data on top of
an unprotected formula. The data may resemble the result of the formula during initial
entry; later, when other data are changed, the formula won't contribute to the total
(Stang-87).

According to Nixon (Nixon-01) these errors can be easily detected using many of the
tools available in the market today. He states that the success in finding these errors is

largely due to the colour-coded overlays that could be applied to the worksheet,
making these errors stand out.

Example 2: Formula Overwritten with an Incorrect Formula

Similar to the previous example. However, the correct formula is accidentally
replaced with an erroneous formula. Unlike the previous example, this error is usually
committed by the model developer.

Deletion Errors

These update errors, on the other hand, are produced as a result of deleting or erasing
existing elements of the structural or programmed component of the spreadsheet
model. These errors too are therefore caused by model developer.

3.8: Deletion Errors (Structural)

Example 1: Deletion of a Formula

A correct formula required by the spreadsheet model is accidentally erased either by
the model developer or during data entry. The main cause of this error is the failure to
protect cells containing formulae.

Data input errors are errors made by end-users who merely manipulate the
spreadsheet model. They are caused by erroneous entry of data required by the model.
These errors can occur while either entering new data or amending/updating existing
data. This can be the basis upon which these errors are further categorised. The two
subdivisions would be insertion and update errors.

Any data input error not produced while entering new data into the spreadsheet model
could only have occurred while altering or amending existing data. Therefore, data
input errors can be exclusively divided into two categories: creation and alteration
errors.

For all data input errors,

IF error occurs when entering new data into the spreadsheet model
THEN insertion error
ELSE NOT insertion error (i.e. update error)

(0

These errors are produced while entering new data into the model. Typically these
would take the form of typographical errors or omissions committed by the data entry
users.

Insertion Errors (Data Input)

Example 1: Erroneous Data Input

Invalid or incorrect data is easily entered into the spreadsheet model because there are
no data checks on entry. In other cases, the right data is put in the wrong cell. Wrong
data can occur as the result of a data entry error or because of incorrect data from the
data sources (Hayen-89). Freeman (Freeman-96) proposes the use of limit controls to
deal with these errors. This would prevent the entry of figures outside tolerable
ranges.

Example 2: Omissions

It is not uncommon for data entry operators to accidentally leave out certain inputs to
the model. As a result, references to the corresponding input data in the
workings/output section are omitted from the model.

An example of such an error was detected by KPMG (London), where there were
insufficient Inputs to the model for extended periods of time. For instance, increase in
vehicle cost is blank until 2001, even though the source of data from that date (from
another worksheet) contains values for the earlier years (KPMG-98).

36

These errors are produced as a result of incorrectly updating existing data in the
model. Update operations (apart from insertion) must either be modification or
deletion. Therefore, update errors in this context can be divided into modification (or
overwriting) errors and deletion errors.

For all update errors,

IF error occurs as a result of overwriting existing data
THEN modification error
ELSE NOT modification error (i.e. deletion error)

Modification Errors

These errors are produced as a result of changing existing data in the model. Typically
these would take the form of typographical or overwriting errors committed by the
data entry users.

Modification Errors (Data Input)

Example 1: Overwriting of Data

A correct piece of data entered is overwritten with an incorrect input. This might be
caused by an update being done in the wrong location of the spreadsheet model.

Deletion Errors

These errors, on the other hand, occur as a result of deleting or erasing previously
entered data from the model. These errors are also caused by users responsible for
data entry.

Deletion Errors (Data Input)

Example 1: Erasure of Data

A correct piece of input required by the model is simply deleted inadvertently. This is
normally committed during data entry or update.

2. Reasoning Errors

Reasoning Errors

Reasoning errors are mistakes in reasoning and therefore not accidental in nature.
They are produced as a result of a lack of knowledge required to comprehend, analyse
and accurately model the business function or problem in the form of an electronic
spreadsheet model.

Reasoning errors can be split into two distinct categories based on an analysis of the
precise cause of the errors, which in this case also involves a study of the cognisance
of the model developer(s). The two classes of reasoning errors are domain knowledge
errors and implementation errors. Conforming to the rules devised at the outset of the
classification process, these are two mutually exclusive categories.

Any reasoning error which is not produced owing to inadequate comprehension of the
underlying problem or function to be modelled on the spreadsheet, could only
possibly have been caused by an incorrect implementation of the problem or function
using the spreadsheet package. We shall refer to this as an implementation error.

38

Therefore, reasoning errors can be exclusively divided into two categories: domain
knowledge and implementation errors. Research into the relative frequencies and real-
life impact of the different types of reasoning errors have shown that implementation
errors are far more common than domain knowledge errors. Domain knowledge errors
are, however, generally more serious than implementation errors.

For all reasoning errors,

IF error occurs owing to a lack of understanding of the
underlying problem or function to be modelled

THEN domain knowledge error
ELSE NOT domain knowledge error (i.e. implementation error)

Domain knowledge errors are specifically caused by inadequate awareness or
knowledge required to identify, analyse and understand the business function or
problem underlying the spreadsheet model. This knowledge is essential for modelling
the problem and designing the corresponding conceptual or logical data model.

Domain knowledge errors, however, do not concern the specific features and
capabilities of any particular spreadsheet package. The matrix of data and formulae
that constitute the recognised spreadsheet model is an electronic representation of a
business function in the real world.

This category of errors consists of two distinct classes, namely real-world knowledge
and mathematical representation based errors. Any reasoning domain-knowledge
error which occurs despite selection of the right algorithm must have been caused by a
lack of understanding of how the algorithm is to be mathematically represented. It
would therefore seem appropriate to term these sorts of errors as mathematical
representation errors.

For all domain-knowledge errors,

IF error caused as a consequence of a lack of knowledge on the
underlying algorithm of a calculation or function

THEN real-world knowledge error
ELSE NOT real-world knowledge error

(i.e. mathematical representation error)

39

These errors involve creating a formula by selecting the wrong algorithm. Users may
select an inappropriate template for a particular analysis or decision task. This may be
due to a lack of accounting knowledge or intellectual modelling logic. For instance, a
model that uses straight-line depreciation when an accelerated cost recovery system is
desired (Hayen-89). When the underlying template or algorithm is wrong, the
corresponding formula constructed would inevitably be erroneous as well. Increasing
the number of developers should increase accounting knowledge and so reduce such
errors (Panko-94).

Real-world Knowledge Errors

Example 1: Exclusion of Factors from Formulae

A fairly common error in this category is the exclusion of important factors in a
calculation. For instance, bad debt provision is excluded in an accounting calculation.
Another example found was the failure to consider the impact of losses b/fwd
(brought forward) in the calculation of tax charge.

Example 2: Inability to Distinguish Between Input Types

In laying out the spreadsheets, a non-income item is put in the column of income
items, causing the value for Total Income to be erroneously large (Brown-87).

Example 3: Absence of Distinction Between Leap and Non-leap Years

This is a simple example of a real-world knowledge error whereby to calculate the
daily figures for a particular leap year, the calculations divide by 365 instead of 366.
KPMG, London (KPMG-98) found such errors in their clients' spreadsheets. For
instance, year 2000 is a leap year, but calculations divide by 365 not 366.

These errors involve constructing the wrong formula despite having selected the right
algorithm. This is due to a lack of knowledge on how to represent a mathematically
correct and accurate formula based on the correctly chosen algorithm. It is possible
that a wrong or inappropriate equation is chosen to solve a problem.

Mathematical Representation Errors

Example 1: The PERCENTAGE Error

This error occurs when the formula to calculate percentage is incorrectly written, due
to a lack of knowledge of how to calculate a percentage or BODMAS (Brackets, Of,
Division, Multiplication, Addition, Subtraction), by which the spreadsheet identifies
precedence in calculations.

Based on Figure 3.15, an example of the error would be erroneous entries such as
in cell instead of

Percentage Error

Example 2: Incorrect Representation of an OVERALL A VERAGE Function

Based on Figure 3.16, the correct formula in F9 is but the formula
is entered instead (Chadwick-97,97a). Alternatively, the cell

should be left blank if the overall average is not required. Adding the average figures
together is meaningless. Although the model developer knew that an overall average
was to be calculated, they incorrectly assumed that the sum of averages would give
the overall average.

5

Example to Illustrate Overall Average Error

41

Example 3: A Variable is Defined Twice

When developing a model, a forecast for a growth rate of X% is made. X is written
into the equations that compute growth but is written in as a constant, e.g.

Subsequently, the user might do a what-if analysis and write an
equation such as During debugging, the two
growth rates might be identical or similar. During use, they might be different (Stang-
87).

Implementation errors are produced due to a lack of knowledge or understanding of
the full use of the functions and capabilities of the particular spreadsheet package in
use, with an understanding of the spreadsheet principles, concepts, constructs,
reserved words and syntax.

Implementation errors consist of logic and syntax errors. For any implementation
error which does not occur as a result of a logic error, its cause has to be a syntax
error. This is different from a typographical error, which is an accidental error. A
syntax error, for instance, can be produced as a consequence of not knowing the
spelling for reserved words in a formula.

For all implementation errors,

IF error is caused by a lack of comprehension of the features
and functions of the spreadsheet package/language

THEN logic error
ELSE NOT logic error (i.e. syntax error)

Logic errors are errors caused by a lack of understanding of the functions and
capabilities of a specific spreadsheet package, which enable the accurate
representation of a solution or some part of it.

Logic Errors

42

Example 1: RELATIVE and ABSOLUTE Cow Problem

The relative copy causes cell references in a copied formula to alter row and column
references relative to the original cell copied. People often make the false assumption
that the software will automatically adapt the cell references wherever they happen to
copy (Chadwick-97). On other occasions, the error is caused by the user copying a
formula hidden underneath a cell value, thinking that they are copying the value from
the cell (Brown-87). According to Hendry & Green (Hendry-94), novices experience
difficulties in learning about relative and absolute cell references, a feature of all
spreadsheets.

According to a report by KPMG Management Consulting, London (KPMG-98), in the
calculation of vehicle leasing costs, the element of the formula that referred to
directors had been lacking a $ sign (used for absolute copying instead of the default
relative copying of formulae), resulting in incorrect cell references when the formula
was copied from the original cell. This resulted in an understatement of the costs (e.g.
by $432k in 2006).

Example 2: Rounding Error

When writing any spreadsheet the problem of rounding must be considered. Rounding
can and should always be controlled. The best approach is to produce rounded
numbers, and perform all operations on them, so that one works with numbers that are
displayed, not with "hidden" values.

Based on Figure 3.18 (Batson-91), it can be seen that the "formatted" column does
not add up. The difference is small and can be attributed to rounding, but it affects the
credibility of the model. It is therefore vital that a spreadsheet modeller understands
what is occurring and takes measures to ensure that the rounding is controlled.

Rounding Error

In example shown in Figure 3.18, the "actual" column refers to how the number is
stored within the spreadsheet (often up to 15 significant figures). The "formatted"
column shows what appears on the screen if the column is formatted to two decimal
places; the numbers themselves, however, are still held in the spreadsheet to 15
significant figures, and it is "hidden" values which are used in subsequent
calculations. The "rounded" column shows what happens when each value is rounded
so that the spreadsheet holds the values to two decimal places only, in which case, as
shown, the column adds up correctly (Batson-91).

Stang (Stang-87) also provides an example of a rounding error. If users format to one
digit to the right of the decimal, and then enter values having greater precision, the
spreadsheet will round off the numbers. Thus will round off to 1.4; the sum of
1.44 and 1.44 will round to 2.9 from 2.88. Such additions would appear to be
incorrect.

Example 3: Circular Reference

Circular references in formulae often indicate that there is an error in the logic of the
model and should therefore be avoided. Such references should be eliminated at the
specification stage (Batson-91). This error frequently occurs in totals where the
formula uses its own value in its calculation. This error will give a run-time error
message and so probably occurs infrequently (Chadwick-97). A common example of
a circular reference arises when calculating bank overdraft interest (Batson-86,91).
This is shown in Figure 3.19 (a) (Batson-91).

Cashflow £

Opening bank balance (overdrawn) (x)
Add: Receipts x
Less: Payments (x)
Less: Overdraft interest based on closing balance (x)
Closing bank balance (x)

Circular Reference

Each time the spreadsheet is recalculated the overdraft interest will change and update
the closing bank balance ad infmitum. The error can be corrected by removing the
circular reference. The correct way is shown in Figure 3.19 (b) (Batson-91).

Cashflow

(x)
x

Opening bank balance (overdrawn)
Add: Receipts
Less: Payments
Balance before over draft interest (x)
Less: Overdraft interest on balance before interest (x)
Closing bank balance

Circular Reference Resolved

According to Ditlea (Ditlea-87), a circular reference was adding the 11-month total
for a region to itself. As a result, the spreadsheet was mistakenly doubling a $10
million figure every time it recalculated.

Example 4: Row is Added to the Model but not the "Bottom Line " Total

This error has been pointed out by several authors (Ayalew-00, Butler-97, Stang-87,
Ditlea-87). The modeller has written an equation to find column totals, writing the
equation in row seven. Data are to be entered below. The equation is written

It works fine until a user adds data in row 100. Because this row is
beyond the range of the equation, the data is not included in the addition (Stang-87).

To quote a real-life example (Ditlea-87), the controller of James A. Cummings, Inc., a
Florida construction company, was putting together a Symphony spreadsheet model to
bid on a $3 million office complex for a local utility. When he realised he hadn't
included a line for $254,000 in overhead costs, he inserted it at the top of a column of
figures, failing to notice that this entry fell outside the range of numbers to be added
by the @SUM (=SUM in MS Excel) function in his formula. This undetected mistake
resulted in a profit-losing "winning" bid (Ditlea-87).

Syntax errors are errors caused by a lack of precise understanding of the constructs,
reserved words and syntax of a specific spreadsheet package, used to write functions
and formulae.

Syntax Errors

Example 1: A Keyword Within a Formula is Misspelled

A keyword within a formula is misspelled causing an error, e.g. instead of
This error can be detected easily as the spreadsheet package would

instantly respond with an indication of an error.

3.5.2 Qualitative Errors

Qualitative Errors

Qualitative errors are errors that do not immediately produce incorrect numeric
values but degrade the quality of the model. The model also becomes more prone to
misinterpretation on the part of the user. As a result, it also becomes more difficult to
update and maintain the model. A more detailed investigation into qualitative errors
reveals that they can be generally divided into two different types, namely, temporal
errors and structural errors.

This dichotomy is obtained mainly based on an analysis of the three views of an
information system. It has been previously established that a spreadsheet system is
also a type of information system.

The three views of an information system: data, processing and behaviour, are also
applicable to spreadsheet models. Within the context of spreadsheet models, the
processing view of a model is the network of formulae used to perform calculations
on data and produce the computation results. This is also the schema of the model.
The data view represents the various input data required for the calculations of
formulae. The processing and data views are rather snapshot in nature. The
behavioural or temporal view represents the effects of time and real world events on
the spreadsheet model. Unlike the data and processing views, this is a dynamic view
of the spreadsheet model.

A qualitative error which is not temporal in nature can be considered a structural
error. This encompasses all forms of non-temporal factors or structural flaws which
degrade the quality of the spreadsheet model. The structural aspect of the model in
this context represents the binding of the model schema (formula network) and data.

For all qualitative errors,

IF error is caused by an elapse of time, which invalidates data
THEN temporal error
ELSE NOT temporal error (i.e. structural error)

46

1. Temporal Errors

Temporal errors are qualitative errors which invalidate data (and possibly formulae)
with the passage of time. As a result, the model ceases to be reliable. Typically these
errors are caused by failure or delays in updating the spreadsheet model to reflect
current circumstances due to the effects of time and real world events on the model.

Temporal

3.22: Temporal Errors

Example 1: Qualitative Error Caused by the Referencing of Non-current Data

Produced as a result of referencing a piece of data that has become invalid due to time
lapse. In the example given below (Figure 3.23), this piece of data is the exchange
rate from Pounds Sterling (£) to Ringgit Malaysia (RM) contained in cell F2. If the
exchange rate undergoes acute fluctuations and the changes are not reflected in cell
F2, the calculation in cell produces a value that is invalid. This is a qualitative
error and any decision made based on this value would be unreliable (Rajalingham-
98).

1
2
3
4
5
6
7
8

A B C D E F

1st Quarter
2nd Quarter
3rd Quarter
4th Quarter

Total Sale of Tea (RM)
31404.6

Tea(£)
450
904
872
123

Milk(£)
560
900
800
234

CoffeefQ
467
352
233
901

Exchange Rate (£ to RM)
7.3

Example to Illustrate the Referencing of Non-current Data

Example 2: A Spreadsheet Model is Fully Debugged but an Earlier, Bus-laden
Version is Used

Unless tight distribution controls are practised, it is not unusual to have 15 different
versions of a budget model, with names like budget, budget10, mybudget, doaksbud,
etc. Each of these variations has some chance of being revised differently by some
user (Stang-87). It is possible that the most current version has been fully debugged
and saved. However, a previous version with flaws is used to make important
decisions.

2. Structural Errors/Flaws

Structural errors in this context can be defined as non-temporal qualitative errors or
flaws produced as a result of poor design or layout of model structures and data.
Based on the physical manifestation of these errors, they can be divided into two
categories: visible errors and hidden errors. Based on an inspection of numerous
qualitative structural errors, it can be concluded that any structural flaw which is not
visible at the surface level of the spreadsheet model has to be hidden at the deep or
formula level.

For all structural errors,

IF error is a structural flaw which is visible at the surface
level of the model

THEN visible error
ELSE NOT visible error (i.e. hidden error)

Visible qualitative structural errors are structural flaws which are visible at the surface
level of the model. The detection of these errors does not require any examination of
the deep or formula level of the spreadsheet model. These errors normally take the
form of semantic errors which make the models more prone to misreading or
misinterpretation. This could be due to the ambiguous nature of the relevant elements
of the model.

Visible Structural Errors

Example 1: Formatting Error

Formatting errors are semantic errors that occur due to lack of uniformity in the
formatting of similar data. This could lead to an incorrect interpretation of their
values. A common qualitative error is where the cell format is specified as general on
the spreadsheet. Consequently, the figures have varying decimal places and make it
difficult to identify a number that is incorrect, by a magnitude of 10, 100, etc. This is
shown in Figure 3.25. The value in cell is greater than the value'in cell G9.
However, at a quick glance, it may seem as if the value in cell is
greater than the value in cell due to the inconsistent use of decimal
places.

:8^fe3mm B
7

3.25: Formatting Error

Example 2: Range Names are Misleading or Incorrectly Used

A range is named as This is generally assumed to refer to a cell containing
cost of goods sold and that COSG has been calculated as they would have done.
However, the designer may have been referring to cost of operations in the general
services division (Stang-87).

Hidden qualitative structural errors, on the contrary, are structural flaws which are not
visible at the surface level of the model and therefore require examination of the deep
or formula level of the spreadsheet model. These errors normally take the form of
complicated, confusing or inappropriate construction of formulae. Such flaws can
make the model difficult to maintain and prone to inconsistencies or update
anomalies. As a consequence, the integrity of the model can be steadily eroded.

Hidden Structural Errors

Example 1: Hard-coding

A fixed value is used when a variable (cell reference) should be used instead. In other
words, cells that should have calculations, contain hard-coded input numbers instead.
For instance, the hard-coding for leap year adjustment (KPMG-97) or net * 77.5%
instead of net * a named variable or range "VAT rate" (Butler-OOa). Batson (Batson-
91) also points out that some numbers, which at first sight appear to be constants, are
often in fact variables, for instance, the rate of inflation or the percentage value for
employees 'pension contributions.

49

Example 2: Complexity of Formulae

The calculation of distances between transit and non-neighbouring areas is apparently
based on a total area of 78,864 sqkm divided into 163 transit or 15 non-neighbouring
areas. The distance is taken as the diameter of a circle of such an area. The formula
could have been written more concisely using the function (KPMG-98). Stang
(Stang-87) suggests that any equation longer than 80 characters uses logic that is
difficult to follow (Stang-87). Ray Butler (Butler-97) identified that addition and
subtraction of numbers within single spreadsheet cells were done without thought for
the audit trail or auditability.

3.6 Summary

There has been inadequate research and examination of specific errors in spreadsheet
modelling. An analysis and classification of specific types of spreadsheet errors has
been carried out as a precursor to the development of approaches to effectively
address the problem. This chapter has presented a more comprehensive taxonomy of
spreadsheet errors than ever presented or published before, based on a rational
taxonomic scheme.

The main reasons for developing a classification of spreadsheet errors are as follows:
 It is a methodical approach to problem analysis.
 It has greater potential for improving comprehensive testing of a spreadsheet

development methodology.
 It provides a deeper insight into the nature and characteristics of the errors.

It is evident that there are no standard methods for producing a taxonomy. The
conventional generic process of classification widely used in zoology and botany has
been adopted in producing the spreadsheet error taxonomy.

The binary structure for an error taxonomy has been found to be more beneficial
compared to the previously adopted bushy method. The current taxonomy of
spreadsheet errors is based on a binary approach that uses dichotomies or IF-THEN-
ELSE rules to classify errors. Therefore, the taxonomy can be expressed in a
structured form. A summary of the entire classification in this form is presented in
Figure 3.27.

quantitative

accidental

:;:;:;:;|:;:;:;:|;::xTHEN structural

insertion

insertion update

modification

modification deletion

structural data input

insertion
insertion update

modification

modification deletion error)

accidental reasoning

domain knowledge

real-world knowledge
real-World knowledge

:;:::;::::i;:::;::::i:xi:i:i (ie mathematical representation
domain knowledge implementation

logic

logic syntax
quantitative qualitative error)

temporal
temporal structural

^^^y^l
visihle

visible hidden

3.27: Entire Classification in Structured Form

51

CHAPTER 4
PAST WORK AND EXISTING DEVELOPMENTS

4.1 Introduction

mainly presented an insight into the problem of user-generated spreadsheet
errors in terms of their frequency and impact, while the previous chapter,
concentrated on the analysis and classification of specific user-generated spreadsheet
errors.

This chapter presents a discussion of a spectrum of existing tools and techniques for
integrity control of spreadsheet models and the different life cycles and methodologies
proposed for their development. An analysis of the effectiveness and limitations of the
tools and techniques is also conducted along with a critical evaluation of the various
life cycles and methodologies proposed for the development of spreadsheet models.

Numerous have been developed and marketed for the auditing and
integrity control of spreadsheet models. Various have also been proposed
to enhance the quality the models. Apart from these tools and techniques, over the
years, several and for the development of spreadsheet
models have been proposed and presented in a host of publications.

4.2 Existing Tools and Techniques

4.2.1 Tools

Software audit tools have been around for almost as long as spreadsheets themselves
(Butler-97). The following are among the most popular computer-based tools that
have been developed to help combat the problem of spreadsheet errors. Not all of
them are in widespread use today.

's Built-in Auditing Functions

Audit Tool for

The objective of this section is to only briefly introduce some of the main tools that
have been available. As such a detailed description of each tool is not given.

52

Spreadsheet Auditor

In the mid-1980s was marketed as an aid to auditing the then
prevalent and file formats. The development of the tool has
ceased (Butler-97).

Cambridge Spreadsheet Analyst

was also developed as an aid to auditing
and file formats in the same period. The development of this tool was also

terminated (Butler-97). The provided two new ways
of viewing a spreadsheet: a citation view, which allows one to see cell relations one at
a time, and a map view, which shows a condensed version of the spreadsheet
revealing similar adjacent formulae (Saariluoma-91).

Microsoft ExceVs Built-in Auditing Functions

These are Microsoft Excel's own built in auditing functions. These built-in functions
are included in Excel as a standard (Nixon-01). The auditing tool enables the user to
easily trace the of any cell. The precedents of a cell are the
cells it while the dependants of a cell are the cells that it.
When tracing the precedents of a cell, an arrow points from each precedent cell to the
dependant cell. This is illustrated in (Chadwick-97). It can be seen that the
precedents of cell E13 are cells and E9. The audit tool also offers a facility for the
user to attach a note or description to a cell.

Identifying

The Excel Auditor

This software is produced by B YG Software and is an add-in for Excel and, despite its
name, provides many functions outside the usual scope of auditing software. The
Excel Auditor provides two primary and two secondary auditing tools. The primary

tools being the which provides a traditional audit map of a worksheet, and
the which documents the contents of a worksheet's cells.
Both of these tools produce a report on a separate workbook. The secondary tools are
the and (Nixon-01).

Spreadsheet Professional for MS Excel (by Spreadsheet Innovations)

is used by all of the largest UK accounting firms, and by
HM Customs & Excise (Butler-97). This tool, by which is
an add-in for has served as a rather useful auditing tool. It is
primarily used to test and document spreadsheet files. It has various functions to help
detect errors in the spreadsheet model. Among the significant functions are the

and the facility.

This function enables the user to view the contents, potential error and precedents of a
formula cell. Each precedent (cell or range) is defined in terms of its location
(address), corresponding row heading and value.

Cell checker Reference translation

Ref Translation
E6E9 Grade1:Grade4 17700.50:102350.3

Calculation Checker

An example of a is shown in The structure of the
formula in the cell is first represented in a form where each cell address is replaced
with its corresponding row heading. In the next row, each cell address is replaced with
its corresponding value.

Cell Translation

54

Spreadsheet Detective

The is also an Excel add-in, produced by Southern Cross
Software. Nixon (Nixon-01) states that there are two fundamental ways in which the
software attempts to assist users in the auditing of spreadsheets. The first is the
identification of formula schema while the second is the listing of potential problems
such as references to non-numeric cells or unprotected schema.

The Spreadsheet Detective's key patented features are the which provides a
proper formula map over the existing cells, and the While the
Spreadsheet Detective's make the use of Named Ranges largely
redundant, this is a useful feature for people who do still use Named Ranges.
Spreadsheet Detective can produce a report of all Named Ranges, including for which
sheet they have been defined and the range to which they refer. They are integrated
with the annotations or Formula report, and the report correlates them with cell labels
or AutoNames.

The Detective tends to produce reports of dubious formulae rather than selecting cells,
with the exception of some of its year 2000 analysis. The Spreadsheet Detective can
also compare different versions of a spreadsheet, which is very important to verify
that only specific changes have been made. The Detective can align both rows and
columns.

The Spreadsheet Detective's advanced features are as follows:
 AutoNames
 full annotations
 useful Named range definition reports
 Year 2000 analysis
 3D formula indication
 workbook precedent report

The Ovens Analysis Kit (OAK}

OAK provides the basic map and formula report required for any spreadsheet audit.
This tool has been produced by Operis Business Engineering Limited, London and
takes the form of an add-in for Microsoft Excel. OAK provides the following features:
 Basic Formula Map
 Workbook Summaries, Formula Report
 Named Range analysis
 Selection of different types of cells
 Spreadsheet Comparison
 Insert/Delete Row/Column
 Development History spreadsheet

The formula map essentially copies the original spreadsheet, and then replaces all
formulae in the original spreadsheet with symbols to indicate whether they are copies
of other formulae above or to their left. OAK can also shade the original spreadsheet
to show which cells have formulae. This is a much better option than producing a

55

separate map because one can see the shading and the formula results at the same
time, as well as being able to manipulate the formulae. However, the OAK shading
gives no indication of how formulae have been copied. It also uses cell colour rather
than patterns, which can corrupt existing formatting.

The workbook summaries provide a list of all the worksheets in a book and some
basic statistics about the size of each worksheet. More importantly, it provides a list of
all unique formulae. OAK provides some excellent facilities to be able to rename
Named Ranges and automatically update the formulae that use them. OAK can also
produce a report of all Named Ranges, including for which sheet they have been
defined and the range to which they refer. OAK can also automatically select cells
based on different criteria. For example, it can select functions with hardwired
constants or that refer to blank cells. It can also compare different versions of a
spreadsheet.

Spreadsheet Auditing for Customs and Excise (SpACE)

SpACE has been developed by the HM Customs and Excise, United Kingdom. It is
mainly used by VAT inspectors in auditing client spreadsheets. However, it is also
available to the public. SpACE works by using a combination of search facilities,
overlaid mapping options and the identification of unique formula, to highlight
potential errors in a spreadsheet. It also has more in-depth auditing functions such as
the ability to check lists of data for duplicates (Nixon-01).

4.2.2 Techniques

Apart from software tools developed to help control the integrity of spreadsheet
models, various techniques have also been proposed. The objective of these
techniques is to enhance the quality of spreadsheet models. The following list captures
a selection of significant techniques described in spreadsheet literature:

 Benham's (Benham-93) Structured Techniques for Spreadsheet Development
 Kee's (Kee-88) Standard Spreadsheet Design Format
 Ronen et al's (Ronen-89) Recommended Spreadsheet Structure
 Ronen et al's (Ronen-89)

Benham's (Benham-93) Structured Techniques for Spreadsheet Development

Benham (Benham-93) proposes the arrangement of the spreadsheet into blocks or
sections along the spreadsheet's diagonal. As a minimum, the spreadsheet should have
the following sections:

Introductory Section
Data and Assumption Section
Model Section (work performed by the spreadsheet)
Analysis Section (required outcomes or results)
Macro Section

56

The block diagonal structure provides a modular character to the spreadsheet. Each
section is effectively isolated from row or column insertions or deletions in any other
sections.

Intro
Section

Assumption
Section

Model
Section

Analysis
Section

Macro
Section

Benham's Block Diagonal Structure

Kee's (Kee-88) Standard Spreadsheet Design Format

Kee's method involves the creation of a common spreadsheet format by first dividing
a worksheet into rectangular blocks, where each block is used to perform one
spreadsheet function. This proposed standard design format is presented in

Spreadsheet Introduction

Data Entry

Data Validation

Formula/Output

Documentation

Kee's Standard Spreadsheet Format

The section in is used to describe the spreadsheet. The
information helps users to identify a template, the task(s) for which it was designed,
and the instructions necessary for its use. In the area, descriptive labels are
placed adjacent to cells where data will be entered for subsequent processing. The
design in separates data and parameters from the formula/output section.
Next to the data entry area is a section. This is used to perform
analytical tests on the input data to detect potential input errors. In the

area, a series of spreadsheet formulae is used to process data into
information. The last section of the spreadsheet is a area. Here a
detailed description of the variables, parameters, formulae and assumptions used in
the spreadsheet is provided (Kee-88).

Ronen et al's (Ronen-89) Recommended Spreadsheet Structure

presents Ronen et al's recommended structure for a spreadsheet. The
purpose of the structure is to separate parts of a spreadsheet into blocks to reduce the
potential for errors. contains a number of blocks which, when taken
together, form the spreadsheet model.

Ronen et al's Spreadsheet Structure

The block presents the name of the developer, user, and model. It also
contains a list of revision dates and the name of the spreadsheet file. To the right of
the identification block is the Immediately below the
identification block is a map or index to the spreadsheet. It contains a description of
where the various blocks may be found and acts as a table of contents for the model
(Ronen-89).

The large block allows the spreadsheet developer to describe in
general terms how the model works and to annotate various rows in the model. The

block contains variables that are used in the formulae. The final block in
the spreadsheet is the itself (Ronen-89).

Ronen et al's (Ronen-89) Spreadsheet Flow Diagrams (SFD)

Ronen et al (Ronen-89) endeavour to apply the notion of in
spreadsheet development. This is due to its popularity in traditional systems analysis
and design as a way to promote structured, top-down design and to reduce
complexity. The proposed are used for the same
purpose.

shows the basic symbols of Ronen et al's A simple rectangle is used
to represent input vectors, output vectors, decision vectors, and parameters. According

58

to Ronen et al (Ronen-89), the advantage of using a structured notation for
spreadsheets is the same as the merits of such notations used in

Input Veotor

Output Vector

Decision Vector

Parameter Vector

Formulae (Model)

Data FIONA/

4.7: Notations of Ronen et al's

4.2.3 Effectiveness and Limitations of the Tools and Techniques

This section presents a discussion of the effectiveness and limitations of the eight
tools and four techniques described in and

All the software tools described in are primarily aimed at facilitating
auditing and error detection in spreadsheet models. Though these developments have
to an extent reduced errors in spreadsheets, they have not been entirely successful as
the phenomenon still persists. The main reason for the lack of success of the tools is
the fact that they concentrate on detecting errors rather than preventing the incidence
of the errors.

There are two criteria that can be used to assess the effectiveness of a software tool:
 Its capacity to detect existing errors
 Its capacity to caution the user on potential errors, flaws and problems

The and have become obsolete
following the termination of their development. These tools were created to help audit

file formats are would be not be very useful today with the more
widespread use in the Windows platform. As the tools were produced in the
mid-80s, they lack the more advanced and sophisticated features of the other more
recently developed tools.

The is the most effective among the eight tools assessed. It
possesses an excellent capacity to detect existing errors and notify users of any

59

potential flaws or errors. The provides an overlay to a
worksheet with different types and colours of shading along with text descriptions.
This easily reveals errors such as overwritten formulae. It also produces reports of

and which can be used to effectively identify dubious and
potentially erroneous cells.

Among the tools evaluated (apart from and
the is the least satisfactory. Though the

offers various functions outside the usual scope of auditing software, it is
neither as effective as the other tools in detecting existing errors nor identifying any
potentially unsafe or problematic cells. A major limitation of the is that
it performs a laborious cell-by-cell inspection rather than using more visual
techniques. However, it can be useful as a documentation tool.

can be regarded as a very
good tool for both detecting existing errors and identifying potentially problematic
cells in a spreadsheet. Its effectiveness in accomplishing these is comparable to that of
the Spreadsheet Detective. SpACE has very good auditing tools but lacks the ability
to produce a formula description in natural language like the

The is highly effective in the detection of existing errors in
a spreadsheet model. This is attributable to ability to produce a basic formula
map and shading of the original spreadsheet. A disadvantage is that this can
sometimes corrupt existing formatting. does not fare as well as the

or on the second criterion. is relatively less effective in
identifying potential problems, such as unprotected cells.

is satisfactory in both the detection of existing errors and
the identification of potentially unsafe or erroneous cells. The detection of existing
errors is mainly done with the help of the feature which enables
quick verification of the logic of formulae. The also
provides useful reports of potential problems or flaws such as unused operands of a
formula, hard-coded formulae and the referencing of blank or non-numeric cells. The
main limitation of this tool is that it does not offer more advanced features for error
detection like the or

do have a reasonable capacity to detect
existing errors in a spreadsheet by tracing the and of a cell.
However, the functions are not effective in identifying potential errors or potentially
unsafe cells, for instance, unprotected and hard-coded formulae. Like the

also have the disadvantage of
concentrating on cell-by-cell inspection.

While most of the software tools focus on error detection, the techniques described in
represent efforts to reduce, if not prevent, the occurrence of errors. The

advent of these techniques indicate an increased awareness of the importance of
adopting more structured or systematic approaches to the development of spreadsheet
models. All the techniques discussed in Section have their advantages and
disadvantages or limitations.

60

There is a significant difference between the first three techniques
and

and the fourth technique
The first three techniques are based on developing a

standard generic structure for the entire spreadsheet model, while the fourth technique
employs an established method within structured systems analysis to specifically
model the workings or calculations part of the spreadsheet. The main limitation of the
fourth technique in this respect is that it
does not address the other important aspects of the spreadsheet model. Therefore, it is
recommended that this technique be applied within one of the first three techniques
discussed in

A comparison of the first three techniques would immediately reveal a fundamental
difference between the first technique

and the next two techniques
and The first

technique, is based on a block diagonal structure while the other
two techniques are not. The advantage of this layout is that each section or module of
the spreadsheet model is not adversely affected by row or column insertions or
deletions in any other parts of the model.

There are certain important similarities among the first three techniques discussed in
They all attempt to adopt a standard, structured and disciplined

approach to spreadsheet development. Apart from that, there is also an emphasis on
the division of the model into distinct modules or components. Applying a modular
structure to spreadsheet models makes them appear more organised and enhances
their comprehensibility. This can also reduce the potential for errors. An examination
of the proposed components or modules within each of the three techniques also
shows certain similarities. and explicitly
separate the input, workings and output components of the spreadsheet model.

performs this segregation within the component.
The proposed spreadsheet layout of all three techniques contains a section that clearly
describes the spreadsheet model.

Based on the assessment of the advantages and limitations of the four techniques
described in it is recommended that the most effective approach would
involve the use of combined with

to model the and sections.

61

4.3 Spreadsheet Development Life Cycle and Methodology

4.3.1 Life Cycles and Methodologies

After a thorough review of relevant literature, the following life cycles and
methodologies have been selected for further analysis and discussion.

PricewaterhouseCoopers (PWC's) Modelling Life Cycle (Read-99)
The KPMG Modelling Process (KPMG-98a)
Hayen and Peters' (Hayen-89) Spreadsheet Development Life Cycle
Panko and Halverson's (Panko-96) Spreadsheet Development Life Cycle
DiAntonio's Method (DiAntonio-86) for Spreadsheet Development
Ronen et al's (Ronen-89) Spreadsheet Development Life Cycle
Chadwick et al's 5-step Methodology incorporating the 3A's Approach
(Chadwick-97)

PricewaterhouseCoopers' Modelling Life Cycle (Read-99)

PWC's Modelling ofe Cycle

This stage is where the nature, scale and complexity of the model are assessed. During
the scope stage, decisions are made as to what needs to be included in the model and
what can be omitted. The level of detail required in the input and logical assumptions
is also established. Apart from that, estimates of time and resource required for the
model development are also made.

To specify is to define the logic of the model in sufficient detail to provide an
unambiguous statement of how the results will be calculated.

62

The design stage involves producing the most effective structure for the model.

The build stage is where the actual coding of the model takes place.

To test a model is to root out errors and inconsistencies and to increase confidence in
the results that the model produces.

During this stage, there is a need to understand how to effectively present information
and to manage the growth of the model.

The KPMG Modelling Process (KPMG-98a)

The modelling process applies to both, model review engagements and model
development. KPMG's Modelling Process is illustrated in

The KPMG Modelling Process

K^JVIU s ivioaeinng rrocess

This is the strategy-setting phase, and will normally involve one or more survey visits
to the client by the engagement manager and/or partner. Objectives and scope of the
model are agreed.

63

The key business risks which define the requirements for the model are identified. A
specification document is subsequently prepared. It contains an of the
model, and required.

This stage involves three activities: and

The review may be either the core of a model review engagement, in which case the
scope of the review will be stated explicitly in the proposal document, or an
independent review following the stage of a model development engagement.

The content of the implementation stage will depend very much on whether the model
is a one-off project model or an ongoing management model.

Haven and Peters' (Haven-89) Spreadsheet Development Life Cycle

The following steps form the proposed by Hay en
and Peters (Hayen-89):

Determine if a spreadsheet is the appropriate tool for analysing the business problem
under consideration.

The paper model can be considered in several different ways. It could be a workpaper
created manually or a form selected from a set of standardised forms.

Collect and prepare the data required by the model.

Create the worksheets.

To verify logic, spreadsheet applications should have as many built-in accounting
tests as possible. The logic of the spreadsheet application can perform these tests
automatically.

64

If several different sets of data are to be input, the developer can establish separate
areas of the spreadsheet for the input data and the equations.

If more than one report or graph is to be produced, creating macros or command files
to do the job helps ensure that the correct data are displayed.

The results should be reviewed for reasonableness before they get final approval.

In the development of a spreadsheet, the documentation should evolve. A final step
should be to check its completeness.

After all the reviews, the final result can be signed off. Whenever a revision needs to
be made, the process starts over.

Panko & Halverson's (Panko-96) Spreadsheet Development Life Cycle

Spreadsheet models, like programs, go through a series of development stages. These
development stages (in order) are identified by Panko and Halverson (Panko-96) to be

and

As done in programming, it is extremely important to determine the requirements
before actual construction of the spreadsheet is begun.

This is the stage when numbers and formulae are entered in the spreadsheet cells.
Many of the mistakes made at this stage are corrected immediately. However, some
errors may be more frequent or more difficult to correct than others.

The draft spreadsheet should be tested with a variety of types of data or inspected cell-
by-cell by the developer or an inspection team.

65

In order to further reduce error rates, developers should engage in the debugging stage
that involves data testing and code inspection.

Even during the operational stage, errors are identified and corrected. However, this
can be expensive and sometimes produce even more errors. As the models are in
operation, extensive damage may have also been done before detection and correction
of the errors.

DiAntonio's Method for Spreadsheet Development

DiAntonio (DiAntonio-86) has proposed a structured method consisting of six distinct
steps for the construction of spreadsheets.

The problem is understood and defined.

2: Isolation of facts is done by splitting the spreadsheet into two parts,
one for and one for the

The solution is formatted or designed and it uses data from
part of the spreadsheet.

The program is tested with sample data.

5: The program is evaluated in terms of functionality, headings, labels
and format.

The program is documented either on the spreadsheet itself or in hard
copy.

Ronen et al's (Ronen-89) Spreadsheet Development Life Cycle

Ronen et al's is based on the traditional systems
development life cycle. It is shown in

I

Ronen et al's Spreadsheet Development Life Cycle

The designer defines the nature of the problem to be solved.

The spreadsheet is usually developed to produce results. The outcome variables need
to be defined. An understanding of the outcome is generated is important. This part of
the model represents the calculations which are undertaken in the model.

This stage corresponds to the traditional notion of programming. Using the various
commands of the spreadsheet language, the model is built.

The results of the model are carefully tested. A hard-copy of the model and cell
formulae are printed. All calculations are checked independently from the
spreadsheet. The spreadsheet is also examined to see if there is an audit trail.

The spreadsheet model is documented on the spreadsheet itself. This involves
inclusion of text on the spreadsheet that explains the model.

The model and its structure are carefully reviewed. The use of audit packages is
recommended.

For systems designed for others to use, a manual is a necessity. For applications
created by the user, a manual is valuable if the application is to be used more than
once.

If the model is to be used by others, they may need to be trained prior to installation.

The spreadsheet is prepared for use, for example, by installing it on a user's computer
so that the model loads whenever the spreadsheet program is started.

Chadwick et al's (Chadwick-97) 5-Stev Methodology

Chadwick et al (Chadwick-97) have proposed a five-step methodology for
spreadsheet auditing, that incorporates the 3A's (appropriateness, accuracy, about-
right) approach. An outline of the methodology is presented here.

Checking the appropriateness of the formula applied, from a logical point of view.
Appropriateness is the correctness of the formula according to the underlying data
model of the business process being modelled. The spreadsheet builder can verify
appropriateness by entering the real-world description of the formula in the
for the cell. An example of this is shown in

68

H

a

Checking the accuracy of the formula entered based on a correct interpretation of the
data model. This can be done by checking the description given in the cell note under
the appropriateness check in

Checking if the resulting numeric value of the cell is about right.

Validating a formula copy to a cell or a range. This can be done by specifically
showing the originating cell and the receiving range in the same colour font
(Chadwick-97,00,00a). The use of this technique is illustrated in

1

i.^ ijjt.ju

F

Colour-coding

Modularising the spreadsheet by breaking it down into separate logical areas
(modules). Each area should be prepared individually and bordered in bold lines on
the screen display. Each could have as many colour codings of formula copies
as necessary as each will be treated as a stand-alone piece.

69

4.3.2 Critical Evaluation of the Life Cycles and Methodologies

The life cycles and methodologies presented in have various similarities
and differences. They mainly vary in terms of level of detail and focus.

Apart from all the other life
cycles/methodologies cover most of, if not all, the stages of spreadsheet development.

is therefore the least comprehensive
approach. Its advantage, however, is that it places more emphasis on spreadsheet
auditing compared to the other life cycles or methodologies proposed. It is
recommended that this methodology be used within one of the other more
comprehensive frameworks.

The most comprehensive life cycles or methodologies proposed are
and the To a large extent, both these

frameworks have common steps or stages. These include
and However, the precise sequence and scope of

the constituent stages are different. Within each stage, the frameworks provide a
detailed description or specification of the application of the relevant steps to the
spreadsheet development process. The depth and comprehensiveness of both these
approaches are mainly attributable to the fact that they have been developed by large
multinational accounting/auditing firms. Apart from that, both frameworks are also
more recently developed compared to the other life cycles/methodologies.

The other four life cycles/methodologies
and do not

provide a detailed description of each stage of the life cycle. They do however address
all stages of the spreadsheet development process. Apart from
the other life cycles consist of a set of sequential stages. A study of the stages of the
four life cycles shows that they are similar to the stages of the traditional systems
development life cycle, especially The advantage of

over the other frameworks is that it proposes the division of the
spreadsheet into part and a and part. This
produces a more organised model structure.

Among the life cycles and methodologies proposed for spreadsheet development, the
most effective approach would be based on or the

In order to further enhance the quality of the framework,
can be applied in the and stages,

and can be adopted in the or
stage.

4.4 Summary

This chapter has presented a discussion of a range of existing tools and techniques for
improving the quality of spreadsheet models, and various life cycles and
methodologies proposed for spreadsheet development. The merits and demerits of the
tools and techniques, and a critical assessment of the life cycles and methodologies
have also been provided.

Among the principal computer-based tools that have been developed to facilitate
auditing and error detection in spreadsheet models are the

and
On the other hand, some of the main that have been proposed for

the quality control of spreadsheet models include

and

The has been found to be the most effective among the eight
tools considered, having an excellent capacity to detect both existing errors and
potential flaws. On the other hand, the appeared to be the least
satisfactory. Based on an analysis of the four techniques described in this chapter, the
most highly recommended approach would involve the use of
combined with to model the and sections.

Various life cycles and methodologies have been proposed for spreadsheet
development. They include
the

and

is the least comprehensive approach but has the
benefit of placing relatively more emphasis on spreadsheet auditing. It has been found
that the most comprehensive life cycles/methodologies are

and the The most effective methodology would be a
hybrid approach based on either or the

combined with in the and
stages, and in the or stage.

71

CHAPTER 5
PRELIMINARY INVESTIGATION AND DEVELOPMENTS

5.1 Introduction

In a framework for classifying user-generated spreadsheet errors based on
a rational taxonomic scheme was presented, while provided a discussion
and evaluation of existing tools and techniques for the quality control of spreadsheet
models, as well as life cycles and methodologies for spreadsheet development. Both
these sets of activities were carried out in parallel.

Having gained an insight into the nature, characteristics and categories of specific
types of spreadsheet errors and the existing tools, techniques, life cycles and
methodologies, an investigation was carried out into various methods and approaches
deemed to have the potential for enhancing the quality of spreadsheet models. This
was preceded by an analysis of spreadsheet structure.

This chapter begins with a discussion of spreadsheet structure. The different aspects
of spreadsheet structure considered are the components of a spreadsheet model, the
structure of formulae and data dependencies. The outcome and findings of the
preliminary investigation into the relevant techniques, methods and approaches, are
subsequently presented. This is the main part of this chapter and represents the first
step in the research programme, towards developing a comprehensive methodology
for the integrity control and development of spreadsheet models.

5.2 Analysis of Spreadsheet Structure

5.2.1 Overview

A spreadsheet is a large matrix consisting of rows and columns. Rows are identified
by numbers, while columns are identified by letters. The intersection of a particular
row and column of a spreadsheet is an individually identifiable cell. A cell address is
composed of a column label and a row label, e.g. A7 (column A, row 7). Brown
(Brown-87) defines an electronic spreadsheet as a two-dimensional matrix of cells
displayed on a computer screen. The contents of the cells can be

or that reference other cells. The underlying contents of a cell are
not readily visible to the user; instead, what is displayed is the numeric result of the
computation indicated within the cell. The formula can be viewed by moving the
cursor to the cell (Brown-87).

A spreadsheet usually consists of connected components. It has a two-level structure,
namely a visible (two-dimensional) surface and a hidden formula network
(Saariluoma-91). Therefore, within the context of spreadsheet calculation, there are
two levels: one which is visible and concrete, and the other which is more abstract and
'hidden' below the first. According to Saariluoma and Sajaniemi (Saariluoma-91), the
surface level of a spreadsheet consists of a set of cells occupied by visible values. At
the deep or hidden level, these cells are connected to each other and form a network

72

defined by a set of mathematical formulae in which variables are bound to the
numerical contents of specified cells. The surface level displays data and numeric
results of the formulae. Knowledge of the surface and deep levels of a spreadsheet is
important when making deletions or changes to formulae. This helps in identifying the
source of errors produced by the changes (Saariluoma-91).

5.2.2 Components of a Spreadsheet Model

Isakowitz et al (Isakowitz-95) propose two distinct perspectives to view spreadsheet
models: and The perspective consists of a formal and
implementation-free description of the model's logic and data structures, while the

level concerns storage, formatting, user interface, and other aspects that
affect the model's implementation. From a physical perspective, a spreadsheet model
is a collection of addressable cells, arranged in a two-dimensional grid (Isakowitz-95).

Isokowitz et al state that every spreadsheet model embeds an implicit
which can be regarded as a set A functional relation consists
of one or more attributes and of one or more tuples. However, unlike ordinary
relations, functional relations have two types of attributes: attributes and

attributes. Data attributes define slots that store constants, whereas
functional attributes are bound to functions that are calculated. Isakowitz et al
(Isakowitz-95) use the term model's to refer to the set of functional relation
definitions within a particular spreadsheet.

According to Isakowitz et al (Isakowitz-95), there are four principal components that
characterise any spreadsheet model: and The
provides the spreadsheet's skeleton and stores a concise and formal definition of the
spreadsheet's underlying logic. The property is the structured collection of
constants on which operates. The property can be defined as what is
left over in the spreadsheet model after and have been carved out: titles,
column and row headings, and documentation. Finally, the property is a
logical-to-physical mapping that binds and to the spreadsheet
grid, using cell addresses (Isakowitz-95).

5.2.3 Structure of a Spreadsheet Formula

Components of a Spreadsheet Formula

Spreadsheet calculation is based on formulae. It is important to precisely define what
a is and to analyse the structure of a formula. A formula is a mathematical
clause. It performs calculations on constants (or absolute values) and referenced
values. A formula has two principal components, a component and an

component. The computation performed by a formula involves a number of
such as multiplication, division or summation

of operands. Operators connect operands. Examples of operators are +, -, /, * and A .

Operands are either or variables (references to other cells). The operands in
a formula are bound to the values of the cells they refer to. From a physical
perspective, take the form of referenced cells. An operator can also be
applied over a block of cells or a range. A range is a rectangular block of cells.

Formulae can be divided into two broad categories based on their referencing
property. They are A

always has the same numeric solution. Its numeric solution does not have the
capacity to change unless the formula itself is rewritten. This is because the formula
does not contain any as its operands, e.g. =45+45 or

25). A does not always have the same numeric solution. Its
numeric solution has the capacity to change without the formula itself having to be
rewritten. This is because the formula contains at least one variable within its set of
operands, e.g. or =B2/12, where Al, AS and B12 are cell addresses.

5.2.4 Data Dependencies

A spreadsheet is essentially a matrix where each entry can contain a number or a
formula which references other cells. A cell x is said to be a (or an

of another cell y, (or if x contains a formula that
refers to y (Saariluoma-91). In this context, y is a of x. If x refers to a
cell y, which happens to be a dependant of another cell z, z is said to be an

of x, but a of y. In (Chadwick-97),
shows data dependencies. The of cell E13 are cells E8

and E9. E8 and E9 are said to be direct dependants of E13.

3
4
S
6
7

'

~

"~_

5.2: Data Dependency

Davis (Davis-96) also uses arrows to define data dependencies between cells.
Referring to (Davis-96), the formula in cell is which makes A4
and B4 are of H2. is a of A4 and This
shows that precedence and dependence are inverse relationships. As the formula in
is is an of cell

Davis' Data Dependency Diagram

5.3 Initial Approaches Explored and Developed

5.3.1 Overview

Prior to the development of the proposed structured spreadsheet modelling
methodology presented in 7, various other approaches were explored and
analysed. Some of the significant developments preceding the development of the
proposed methodology are described in this section.

The approach of this research has been to examine the applicability of main-line
software-engineering techniques to the needs of spreadsheet developers. These needs
are partly determined by the visual nature of spreadsheets and their heavy reliance on
referencing and intermediate data, and partly by the likely acceptance of techniques
within the industry.

5.3.2 Modularisation Based on the Concept of an

technique or process of modularisation based on the concept of an was
initially proposed (Rajalingham-98,99). The modular approach employs principles of
software engineering such as and Support for the modular
approach came from DiAntonio (DiAntonio-86) and Chadwick et al (Chadwick-97)
but was weakly defined in both these sources. Within the context of spreadsheet
development, refers to the structuring of the spreadsheet model into
distinct blocks or modules with data being passed between them. An important
justification for this approach is that the human mind finds it difficult to interpret and

process large chunks of data. When data is logically and systematically split into
smaller parts, it simplifies analysis.

The modular approach dictates the division of the physical model (spreadsheet data)
into distinct modules. The fact that the spreadsheet is separated into separate blocks or
modules suggests that a modular approach is being taken, based on an analysis of
spreadsheet structure. The term given to a distinct module of the spreadsheet is an

An can be defined as a matrix representing a logical area or module of
the spreadsheet. An extent is a range with special properties. It has various special
characteristics. A spreadsheet is defined as a collection of inter-related extents.

The minimum size of an extent is a 2 by 2 range (4 cells). The first column of an
extent contains the row headings while the first row of an extent bears the column
headings. Every cell within a particular column (except the first column) is associated
with the same column heading, which occupies the top cell of that column. Similarly,
Every cell within a particular row (except the first row) is associated with the same
row heading, which occupies the left-most cell of that row.

Column headings and row headings of an extent must be defined by the user. No two
cells can have exactly the same combination of column heading and row heading as
there cannot be two or more column headings or row headings with the same name,
although a column heading can share the same name with a row heading.

The following steps are taken in defining an (Rajalingham-98,99):

Every value must be placed at the intersection of a particular labelled column and a
labelled row, and must be semantically consistent with the meaning the pair has in
real life.

Every new entry or value for which there already exists both a corresponding column
label and a corresponding row label, must be entered in the cell at the intersection of
the particular column and row.

If a new entry only has either a corresponding column label or a corresponding row
label present within the existing structure, then the missing column/row label is added
to the extent. If the new entry has column and row labels that do not semantically
match any of the existing column and row labels, it must be placed in a different
extent. The resulting generic structure of an extent is shown in
(Rajalingham-98). The spreadsheet model shown in 5.5 is an example of an

The process of modularisation, based on a similar approach, was subsequently
presented more elaborately with examples by Chadwick et al (Chadwick-99a).

76

r+2

Extent

of the extent is defined in terms of its top-left cell (column q, row
r) and bottom-right cell (column 1, row

are contained in cells in the first row (row r) of columns q+1
to column 1.

are contained in cells in the first column (column of rows r+1 to
row m.

are contained in all the other cells except the top-left cell (column q,
rowr)

D H

9
10

5.5: An Example of an Extent

5.3.3 ' ' of a Spreadsheet Model

This approach involves placing diagonally on the spreadsheet (Rajalingham-
99). This prevents any column or row of the spreadsheet from containing more than
one label. It also isolates every cell entry from row or column insertions or deletions
in any other parts of the model. The idea underpinning this technique was inspired by
the block diagonal structure proposed by Benham et al (Benham-93), described
briefly in in

An example of a diagonalised model is displayed in (Rajalingham-99). The
structure shows that there are cells within a particular extent that are (permanently)
unused. These should be marked or labelled appropriately (e.g. N/A for not
applicable) and protected. The model in consists of two inter-related
extents. The diagonalisation of these extents leaves behind two unused regions for
every two extents. These regions can be used to describe the relationship (if any)
between the two extents.

A

1" Quarto

2" Quarter

3" Quarter

4* Quarter

Total Sale

B
Tea(£)

450

904

872

123

=SUMCB2:B5)

 ~c~ 1
MiD<£)

560

9CD

803

234

=SUM(C2:C5)

__.__...

Cofie<Q

467

352

233

901

=SIMDC:DF)

E
Ruiggit Malaysia

N/A

N/A

N/A

N/A

=SUM(B6:D6)*G10

F

2 Months Ag>

Lart Month

Current

Aven?

G

Exchange Rate
(CtoRM)

69

8.1

73

=AVERACE(C*:G10)

1

2
3
4

5 i
6

7
i

8
9
10
11

Diagonalised Model

This approach has numerous benefits. It enables the various extents of a particular
spreadsheet model to be laid out in an organised fashion. This may decrease the
probability of the occurrence of errors. Any ambiguity concerning the meaning of data
is also removed as each is associated with a meaningful pair of column and
row labels. Apart from that, this benefit is also derived from the fact that a particular
row or column in the spreadsheet is only associated with one meaningful label
(Raj alingham-99).

5.3.4 Visual Representation of a Formula in

As a by-product of the modular approach, it is possible to visually represent the
elements of a spreadsheet formula (Rajalingham-98,99). Most of the errors that occur
in spreadsheets concern formulae. When such errors are committed, it is often
difficult to detect and correct them based on the original structure of the formulae that
appears in the formula bar of the spreadsheet screen. This is primarily due to the use
of cell addresses in the formulae to refer to data.

This problem can therefore be overcome if formulae were represented in a more
visual, English-like and comprehensible form. This will certainly facilitate the
validation and audit of spreadsheet formulae. The proposed technique for visually
representing spreadsheet formulae will be able to present formulae in such a form.
Any software tool used to implement this technique will be able to convert a formula
written by a user in conventional form, expressed in terms of cell addresses, into a
form that is more readable and visual. This is done mainly by displaying the
corresponding column and row labels of each cell referenced by a formula. This
makes every spreadsheet cell value meaningful and also ensures that the user
understands this meaning when creating and using the spreadsheet.

Several methods of presenting such formulae have been developed in this form
(Rajalingham-98). These different methods are presented as 7, and 3, based

on the spreadsheet model in Referring to 5.5, formulae are present
in the following cells: and

The formulae selected to illustrate the various methods are:

F10
H10

=SUM(F6:F9)
=G10/D10

Method 1: Algebraic English

F10 =SUM(Night

HI

This method simply converts each cell address to its corresponding column and row
headings but retains the binary operators.

Method 2: Fully Enslish

F10 Night Wages £_Grand Total (to)

H10 Average Wage £_Grand Total
(divided by) No

This method converts each cell address to its corresponding column and row headings
as well as each binary operator from symbol to natural language.

Method 3: Graphic Display

F10

79

This is the most visual of the three methods. Apart from associating each cell address
with its column and row headings, this method also displays the value contained in the
particular cell. In each display, a different colour is used for each different column
heading and row heading. For instance, in the first example, all three cells shown have
column heading £) in the same colour text to indicate they are all
in the same column. However, the row headings and
are in different colours and indicating that they are in different
rows.

A survey (Rajalingham-98) was carried out to determine the preference of students to
these visual methods. The students were presented with four choices: the normal

formula style and the three mentioned above. They were asked to rank them in
order of clarity and ease of understanding. There were 63 respondents to the
questionnaire. 46 respondents (73%) indicated preference for the visual methods. 21
of them (34%) chose (the graphic display) as the most clear and easiest to
understand. It was the most appealing of the four choices, with the normal formula
style (26%), the algebraic English (18%) and the totally English (22%).

5.3.5 The Use of Tree Structures to Express Data Dependencies

is a technique commonly used in software engineering to
gradually break down the complexity of programs. A similar approach can be adopted
in spreadsheet design and development. The objective of this technique is to represent
the elements of a spreadsheet formula in the form of a tree (Rajalingham-99,00). This
can be used to confirm our understanding of the formula structure and may be used as
a means of documenting the design of the spreadsheet model. All types of formulae
can be represented in the form of a tree, including the spreadsheet (e.g.
built-in functions.

The general format of a function is as follows (Kantaris-94):

is the function name, and ' etc., are the arguments
required for the evaluation of the function. Arguments must appear in a parenthesised
list as shown above and their exact number depends on the function being used.
However, some functions do not require arguments and are used without parentheses.

The examples displayed in (Rajalingham-99,00) clearly show how this task
is performed. The tree represents all the elements of a particular formula (hard-coded
constants, cells referenced, operators and mathematical functions).

80

^^H

A

5.7: Formulae Represented Using Tree Structures

As all functions are of the same form, = we can
represent each in the form of a tree (not necessarily a binary tree). The root would
now contain the function name while each argument would form a node. An example
is given in (Rajalingham-99,00).

AU-SUM

Formulae Represented Using Tree Structures

Tree structures can also be used to represent the logical aspect of the formula,
independent of physical location. Examples of this are given in
(Rajalingham-00). In is the sum of

and Based on and 5.9, it can be seen
how these tree structures can be used to facilitate comprehension, analysis and
documentation of formulae. The use of tree structures have been proposed in the
analysis and design stages of the
presented by Rajalingham et al (Rajalingham-99a). This methodology is mainly based
on the classical systems development life cycle by Aktas (Aktas-87).

81

Logical Aspect of Formulae

5.4 Summary

A spreadsheet is a two-dimensional matrix of cells that has a two-level structure
consisting of a visible surface and a hidden formula network. A spreadsheet model
can be viewed from both a logical and physical perspective. It is made up of four main
components: and A spreadsheet performs calculations
through formulae. A spreadsheet formula consists of a component and an

component. If a cell contains a formula that refers to cell >>, is the
while is

An initial software engineering based method developed was a technique of
modularisation based on the concept of an Using this technique, the physical
spreadsheet model is split into distinct but logically related modules (or matrices) with
special characteristics, called This technique was subsequently enhanced
through the of the spreadsheet model. This involves placing
diagonally on the spreadsheet to isolate cell entries from row or column insertions or
deletions in other parts of the model.

A by-product of the modular approach is a technique for visually representing
elements of a spreadsheet formula in a more comprehensible form. This facilitates
more effective validation and audit of spreadsheet formulae. Alternative methods of
presenting formulae in such a form include and

By combining the techniques of visual modelling and hierarchical
decomposition, can be used to model data dependencies during
spreadsheet analysis and design. These tree structures can represent both the logical
and physical views of a formula. This enables better comprehension, analysis and
documentation of spreadsheet formulae.

82

CHAPTER 6
SOFTWARE ENGINEERING PRINCIPLES
AND JACKSON STRUCTURES

6.1 Introduction

The flexibility and freedom offered by a spreadsheet has set it apart from conventional
applications and programming languages. However, as discussed in and 3,
spreadsheets are more prone to errors compared to conventional programs and
applications. Even these conventional programs and applications had numerous errors
and flaws that were successfully reduced with the application of structured methods.
A natural approach to enhancing the quality of spreadsheets should therefore involve
the application of structured methods and software engineering principles.

presented the outcome and findings of a preliminary investigation into
various methods and approaches deemed to have some potential in improving the
quality of spreadsheet models. This was followed by a more thorough examination of
relevant software engineering principles and structured techniques, and their potential
application to the design and development of spreadsheet models.

This chapter discusses related software engineering principles and methods, as well as
their application to spreadsheet development. The main techniques and principles
underpinning the proposed structured methodology are derived from these methods
and techniques. Extensive emphasis is placed on Jackson structural forms as the
application of these structures is an essential part of the proposed methodology. A
general discussion of software engineering principles and their application to
spreadsheet development is first presented. The rationale for the selection of Jackson
structural forms is then explained along with the concepts, notations and rules of
Jackson structures. This is followed by a discussion of other relevant software
engineering principles. In the next chapter, 7, the proposed structured
methodology for the development and integrity control of spreadsheet models is
elaborately described and presented with illustrative examples.

6.2 Software Engineering Principles

This section presents a general discussion of software engineering principles and their
application to spreadsheet development. There is no universally accepted definition of

(Jones-90). It has numerous definitions.

Sommerville (Sommerville-01) defines software engineering as an engineering
discipline which is concerned with all aspects of software production from the early
stages of system specification through to maintaining the system after it has gone into
use. The defines software
engineering as the systematic approach to the development, operation, maintenance,
and retirement of software (IEEE-83). Steward (Steward-87) states that the field of
software engineering is concerned with all of the activities involved in the solution of
problems through the development of computer systems.

These and most of the other definitions offered, clearly establish the scope of and
general approach to software engineering. It is a systematic approach that
encompasses all aspects, stages and activities involved in the development of software
systems. This can be applied to spreadsheet development. Spreadsheet development
should adopt a systematic and organised approach that covers all stages and activities
of the spreadsheet building process.

There are various principles of software engineering that are applicable to spreadsheet
development. Many publications (Bell-00, Sommerville-01, Jones-90) state that
software engineering is concerned with the selection and development of the most
appropriate methods, tools and techniques used for producing software. According to
Sommerville (Sommerville-01), software engineering methods are structured
approaches to software development which include system models, notations, rules,
design advice and process guidance. Most of the methods and techniques are based on
a graphical representation of system models as the basis for system specification or
design. This principle can be employed in spreadsheet development. In order to adopt
a structured approach, appropriate methods, tools and techniques can be borrowed or
developed, and used within the spreadsheet building process.

The investigation of the field of software engineering has revealed that other
important principles are also applicable to spreadsheet development. They are as
follows:
 an emphasis on finding out and defining the exact requirements of users (Bell-00,

Steward-87)
 formal specification of the requirements of a system (Bell-00)
 greater emphasis on quality control and eliminating errors (Bell-00, Jones-90)
 look at the broad picture first, ignoring details, then look at successive smaller

parts in greater detail (Steward-87).

The normal stages of the software life cycle (van Vliet-96, Jones-90) are:
 Specification
 (Requirements) Analysis
 Design
 Implementation
 Testing
 Operation and Maintenance

Each software system passes through these stages. A software development process
model describes how, and in what order, these stages are organised and carried out.
The following are the main software development process models that have been
proposed or developed (Jones-90, van Vliet-96, Bell-00):
 (traditional) waterfall
 prototyping
 formal methods
 spiral

84

6.3 Rationale for Selection of Jackson Structures

This section contains a discussion of why Jackson structural forms are considered to
be the most appropriate for the proposed methodology described in the next chapter,

A justification of why other approaches have been dismissed, is also
provided.

The problem of errors in spreadsheet development can, in many ways, be compared to
the days of main-line software development before the advances due to structured
programming, analysis and design. Numerous publications (Ronen-89, Benham-93,
Isakowitz-95, Panko-96, Kavanagh-97) have proposed the adoption of these
techniques to spreadsheet development, in order to overcome the problem.

Several programming and design methodologies originated during the 1960s and
1970s, with goals to systematise the process of software analysis and design, in order
to reduce errors and improve quality in the development process. Among the
important methods proposed were M.A. Jackson's

(Jackson-75, Cameron-83, Ingevaldsson-86),
(Chen-76) and the methodology

(Warnier-81, Orr-81). In the 1980s and 1990s, these methods were supplemented by
methods (Rumbaugh-91, Booch-94). As these methods concentrate

primarily on the logical structure of data, it was believed that they could be potentially
applied effectively in spreadsheet development.

There are several important reasons for selecting
The principal purpose was for practical reasons. The spreadsheet user

community or market is varied and unsophisticated. This rules out more complex
methods such as and A
diagrammatic tool is essential for logical modelling. This is a basic software
engineering principle.

Among the various methods considered, it was found that the simplest tool in concept
is based on This is primarily because it relies only on data
dependencies. Data dependencies are very well understood in the spreadsheet
community as a result of their familiarity with cell references and the use of auditing
tools. Therefore, as a first step, it was quite clear that the use of Jackson structural
forms seemed to be the most favoured candidate. This is primarily due to the current
state of spreadsheet users' computing knowledge and experience. According to
Ingevaldsson L (Ingevaldsson-86), JSP notation can be easily taught to end users. The
other methods such as the and

require relatively high spreadsheet user skills.

has been fairly widely promulgated,
particularly in Europe, where it has been successful as a standard and in the
development of software systems (Cameron-83). Programmers using JSP have found
that it results in few, if any, logical errors (Ingevaldsson-86). He also states that the
clearly defined step-by-step approach adopted enables different programmers
applying JSP to present similar solutions to the same problem.

85

It appears that there are several possible advantages to the adoption of a structured
approach based on Jackson structures. These advantages may be summarised as
follows:
 a structured diagrammatic representation of the of the spreadsheet

model's schema
 a well-defined approach to

a of model and module structures
 a structured format to the layout of the model as a whole and its modules
 the possibility of of new spreadsheet models and

automatically re-structuring existing spreadsheet models

6.4 Concepts and Notations of Jackson Structures

(Jackson-75) are named after their originator Michael Jackson. The
essence of is the structure diagram and its
relationship to block structure, with its three key constructs of and

Jackson structures offer an elegant diagrammatic way of showing sequence,
selection and iteration in program or data structures (Weaver-02).

shows a structure diagram, representing a typical block structured module.
The repeated parts of the structure are denoted by an asterisk (*) in the top right-hand
corner. The structure parts which are selections and therefore mutually exclusive, are
denoted by a small circle in the top right-hand corner of the box. The diagram shows
that A consists of a repeated block B, and each B is made up of either C or D. C is a
sequence of blocks E and F.

B

D 0

An Example Jackson Structure Diagram

The box, A, contains the name of the structure. This name describes the contents
of the structure. The bottom boxes or (i.e. those that have no other boxes
below them) are known as (Weaver-98) or (Ingevaldsson-
86). In the leaves are and and C) are all of the
intermediate boxes, between the top box and the end-leaves (Weaver-98).

86

6.4.1 Sequence

A sequence has two or more parts, occurring once each, in order (Jackson-75). The
sequence of the blocks or boxes of a Structure Diagram is read from left to right.
Based on (Ingevaldsson-86), A is a sequence of B, C and D. D in turn, is a
sequence of E and F. We refer to the bottom blocks/boxes, B, C, E and F as
(Ingevaldsson-86) or (Weaver-98).

In (Weaver-02), X is a sequence of A, B, C and D. The diagram is read
from lefty to right. Therefore, A is followed by B, B is followed by C and so on so
forth (Weaver-02). X is the or It can also be regarded as the
of A, B, C and D. On the other hand, A, B, C and D are considered of X.
There is effectively a relationship between a and a with

at the of the relationship. Though a can have one or more
each must belong to one and only one A Jackson structure

always has one (Weaver-02) or It appears at the top of the diagram.

Sequences

87

Figure 6.3: Sequence

6.4.2 Selection

Some parts of the structure diagram are mutually exclusive, i.e. there has to be a
selection of one element or another, but not both. A selection has two or more parts,
of which one, and only one, occurs once for each occurrence of the selection
component (Jackson-75). Selections are denoted by a small circle in the top right-hand
corner of the box. Referring to A is a selection of either B or C, but not
both. Some elements of a structure diagram may be entirely optional, i.e. a null
selection is possible. Based on A is a selection of B or nothing else.

Selection

Null Selection

In (Weaver-02), Y is a selection of B or C or D. When Y is reached, one
and only one of B, C and D must be selected.

Selection

6.4.3 Iteration

Parts of the structure diagram may have to repeat several times. Iteration or repetition
is indicated by an asterisk (*) in the top right-hand corner of the box. An iteration has
one part, which occurs zero or more times for each occurrence of the iteration
component itself (Jackson-75). All parts of a structure diagram below an iteration box
or component would be subject to the iteration (Weaver-98).

Based on 7, the iteration box B means that the sequence of C and D is also
iterated. In other words, the sequence can be repeated. Although an iteration can have
only one child (a box marked with an *), that child can be the parent of an entire sub-
structure (Weaver-98).

89

Iteration

In (Weaver-02). W is an iteration of B's.

Iteration

6.5 Jackson Structure Rules

There are a number of basic rules that must be observed in the creation of Jackson-
like structures:

 All boxes hanging from a single 'parent' box must be of the same type, i.e. all
selections, or all sequence boxes (Weaver-98).

 A sequence must have only components without symbols in the next lower level
(Ingevaldsson-90).

 A selection must have selection parts only in the next level below (Ingevaldsson-
90). All children (two or more of them) of a selection must be boxes with an 'o' in
the top right-hand comer (Weaver-02).

 All selection boxes must have a structure box above them (Weaver-98).

90

An iteration must have only a single iterated component in the next lower level
(Ingevaldsson-90).

6.6 Other Principles and Techniques

A meticulous study of various other principles and techniques from the fields of
software engineering, programming and information systems has revealed that some
of these techniques can be employed in the analysis, design and construction of
spreadsheet models.

Indentation is an important technique used in structured programming. The
philosophy of structured programming, as outlined in (Dahl-72) promotes the
indented form for code. This form has led to huge improvements in the
comprehension of code, leading to improvements in productivity, auditing and
maintenance (Knight-00). Later work (Jackson-75) proposed methods for the
translation of data structure into structured form. Jackson proposed that the form of
the data structure diagram should be extracted from the natural structure existing in
the data to be processed.

(Knight-00) and (Ingevaldsson-86) show examples of how the
structured form of data is extracted from the data structure. The indented structure on
the right is the structured programming equivalent of the structure
diagram. It can be seen that the indentation is consistent with the levels of data within
the Jackson structure.

B

C
0

D
o

A
REPEAT

B
IF? THEN

C
E
F

ELSE
D

END IF
END REPEAT

Extraction of Indented Structured Form

91

Extraction of Indented Structured Form

The term Virtual columns' is used as the multiple physical spreadsheet columns are
viewed as a single column. As such, each row can only contain exactly one
function or calculation. The formulae and inputs corresponding to their labels are
entered in a set of (virtual) columns consistent with the indentation of the labels. They
are located in different according to their position in the data
structure. When these formulae and inputs appear in different Virtual columns', the
comprehensibiliry of the model is improved significantly. The precedents of each
calculation can be easily identified.

According to Benham (Benham-93), the foundation for this separation is consistent
with Sprague and Carlson's (Sprague-82) characterisation of decision support systems
as having a data component, model component and user-interface/presentation
component. Kee (Kee-88) proposes the use of a central data entry area to make data
entry easier and to prevent input errors.

The concept of modularising software lies at the heart of software engineering
methodologies. The idea of breaking down a complex piece of software into smaller
relatively isolated sub-components is an appealing one from many points of view'
Maintenance, testing and de-bugging, re-use and estimation are all facilitated by
modularisation.

92

Modularisation can be used as a mechanism for segmenting or decomposing a
spreadsheet model into smaller parts. Each part is known as a module. Modularisation
is the key to successful software engineering, allowing complex systems to be broken
down into manageable sub-systems, for ease of comprehension and maintenance.
Indeed, the basic principle guiding modularisation can be said to characterise different
software engineering methodologies.

Object-oriented software engineering is characterised by Parnas's information hiding
principle (Parnas-72), and Stevens, Constantine and Myers' structured approach
(Stevens-74) is characterised by the concept of code cohesion. In the proposed
structured spreadsheet development methodology, modules are defined by graphical
properties of data structure diagrams.

6.7 Summary

Software engineering principles and methods, as well as their application to
spreadsheet development, have been discussed in this chapter. This includes a detailed
description of Jackson structural forms as the application of these structures is an
essential part of the proposed methodology. Although there is no standard definition
for it is widely accepted that software engineering is a
systematic approach that encompasses all aspects, stages and activities involved in the
development of software systems. Spreadsheet development can also adopt a
systematic approach that covers all stages of the spreadsheet building process.

Among the main software engineering principles that can be applied to spreadsheet
development include the development of appropriate methods, tools and techniques,
precise requirements definition, formal specification of requirements, greater focus on
quality control, and adopting a top-down approach. The normal stages of the software
life cycle are and

The main software development process models include the
model, and the model.

The adoption of structured systems development techniques has been widely proposed
to effectively deal with the problem of spreadsheet errors. In systems development,
among the main methods developed include

the method and methods. From
an investigation of the suitability of these methods to spreadsheet development,

based on has emerged as
the most desirable method. This is mainly due to its maturity, simplicity, relevance
and practicality. The Jackson method is far more likely to be accepted compared to
the other methods, which require relatively high spreadsheet user skills.

The three key constructs of and form the basis of
Jackson structural forms based on There are also
certain basic rules that must be followed when developing Jackson structures. Other
important principles and techniques that can also be employed in the development of
spreadsheet models include

and

93

CHAPTER 7
THE PROPOSED STRUCTURED METHODOLOGY

7.1 Introduction

provided an understanding of related software engineering concepts and
principles, and their potential application to the design and development of
spreadsheet models. The principal method focused upon was the use of

Based on the software engineering principles and structured techniques investigated, a
comprehensive structured methodology for the construction and integrity control of
spreadsheet models has been developed. This chapter presents the proposed
methodology in detail. It begins by discussing the development and synthesis of the
methodology from the material considered in The various stages of the
methodology are described in detail with suitable examples. The methodology's
potential for quality improvement is also discussed.

The proposed structured methodology represents a significant development or
advance in the research into the development and integrity control of spreadsheet
models. Preliminary versions of the methodology are presented by Rajalingham,
Chadwick, Knight and Edwards (Rajalingham-01,02; Knight-00; Chadwick-99).

The proposed methodology imposes a strict discipline in the process of spreadsheet
development using software engineering principles. This reduces the occurrence of
errors as spreadsheet models are designed and constructed in a structured and
organised manner. The methodology distinctly describes a technique for modelling
the spreadsheet problem and subsequently mapping the design onto the physical
spreadsheet according to prescribed rules and a structured algorithm.

7.2 Development and Synthesis of the Proposed Methodology

This section provides an account of the development of the proposed methodology
and its synthesis from the material considered in the previous chapter,

7.2.1 General Software Engineering Principles

Based on the discussion of software engineering principles in it has been
found that many of these principles are applicable to the development of spreadsheet
models. Therefore, these principles have been incorporated into the proposed
methodology. It has been established that software engineering is a systematic
approach that encompasses all aspects, stages and activities involved in the
development of software systems. The proposed methodology adopts a systematic and
organised approach that covers all stages and activities of the spreadsheet building
process. shows the relationship between the proposed structured
methodology and the normal stages of the software development life cycle given in

94

The different stages of the proposed methodology are described in detail in
the next section,

Requirements Analysis and Development of

Conceptual Design of the

Logical Design of the

Physical Construction of the
on the Spreadsheet

Development of the
Entry of

Implementation and
the

Implementation the

and
the Spreadsheet Model

7.1: The Proposed Methodology and the Software Development Life Cycle

Various other principles of software engineering discussed in the previous chapter
have also been used to develop the proposed methodology. Appropriate tools and
techniques are used within the methodology as software engineering is concerned
with the selection and development of the most appropriate methods, tools and
techniques used for producing software. These include

and The proposed
methodology also includes models, notations, rules and design advice. Techniques
such as Jackson structures are used to produce a graphical representation of the
spreadsheet model as a basis for specification or design.

95

Among the other important software engineering principles used to develop the
proposed methodology are as follows:
 An emphasis on eliciting and defining the exact requirements of users in

Formal specification of the requirements of the spreadsheet system in and

Focus on a high-level view or broad picture first, followed by a look at successive
smaller parts in greater detail in 7, and
Greater emphasis on quality control and eliminating errors in all stages of the
methodology.

7.2.2 Application

The suitability of a front-end of the proposed methodology for spreadsheet
development, based on the Jackson structural forms (described in has been
investigated. It has been found that the conceptual or logical design of spreadsheet
models can be represented in a form identical to a This technique is
used in and of the proposed methodology.

When Jackson structures are used to represent the logical design of a spreadsheet
model, they can distinctly show all the relationships within the model's schema. As
described in <5, Jackson tree structures are based on three key constructs:

and These constructs can show the sequence, optionality
and iteration of data items. The three constructs of Jackson structures are also
applicable to the design of a spreadsheet model.

Referring to based on Chadwick et al (Chadwick-97), there
is a need to calculate the

7.2: Inputs for the Staff Budget Model

The formula is:

and therefore direct precedents
being one of the operands of the formula is made up of

and The formula is:

Based on this analysis, a partial Jackson structure can be constructed, comprising a set
of hierarchical sequences. This is presented in

96

Average

StafT Wage;

Total Number

ofStafT

7.3: Sequences

This feature of Jackson structures can be used in spreadsheet models to represent
mutually exclusive sets of direct precedents for particular formula. For the purpose
of clarity, appropriate conditions can be attached to selection structures.

In the calculation of the formula is:
IF
THEN *
ELSE

In a spreadsheet cell, the corresponding formula for tax would be written in the form:
= IF (taxable profit > 0, taxable profit * tax rate, 0)

In either case, and the constant would be direct precedents of
The operands forming the condition within the formula are mandatory precedents. As
such they are represented using sequence boxes.

Additionally, depending upon the value of would have either
and or as its direct precedent(s). This part of the formula

can be shown using a selection structure. This would be represented in the form of a
Jackson structure as displayed in

97

7.4: Selection

Within the context of spreadsheet models, iterations in Jackson structures can be used
to show parts of a model that may repeat several times. An iterated component
represents multiple instances, where each instance corresponds to a different time
period, group, category, etc.

Based on the Staff Budget model example, the average wage for each grade is also
required. The formula to calculate this for each grade is exactly the same. This part of
the logical design is shown in

7

Set of
Grades

*

Grade

Average
Wage

/ \\

7.5: Iteration

98

It has also been identified that is defined as the sum
while is the sum

X
Total Day

Wages

*

Grade Day
Wages

o /' N

\
Total Night

Wages

*

Grade Day
Wages

Iteration

This part of the model can now be incorporated into the sequence structure shown in
and the iteration structure in The resulting Jackson structure is

displayed in This structure represents the logical design of the entire
model.

7.7: Logical Design

99

7.2.3 Other Principles and Techniques

There are other software engineering and programming principles and techniques
described in that have also been used to further develop and enhance the
proposed methodology.

Jackson (Jackson-75) has shown that there is direct correspondence between data and
program structures, and that can be directly mapped onto the
corresponding program code. This technique is used in of the proposed
methodology, to translate the logical design represented in the form of a Jackson
structure into a structured spreadsheet. This is illustrated using the example of the

model. shows the extraction of the structured spreadsheet
from part of the logical design produced earlier (displayed in 7.7). The
indented structure on the right is the structured programming equivalent
of the structure diagram.

7.8: Translation of Jackson Structure to Structured Form

100

This technique is applied in and of the proposed methodology. The
positioning of formulae and inputs in virtual columns is demonstrated in 7.9,
based on the model.

Wi£i$Mi£

AQQ.55 li^&^im

W^^§^§^^i

Virtual Columns

This principle or technique is adopted as an essential part of the proposed structured
methodology. DiAntonio's method (DiAntonio-86) also advocates the segregation of
facts by dividing the spreadsheet into two parts, and

and The model example is used to show
the three divisions of the spreadsheet model: and
This is illustrated in

101

287,930.75
3.400.55

9

11.653:25

coo

Separation of Input, Workings and Output

The principle of is used within the proposed methodology. In
and rules are formulated to systematically segment or decomposing the
spreadsheet model into smaller parts or modules. This is more elaborately explained
in the next section,

102

7.3 The Proposed Structured Methodology

The methodology consists of eight principal stages:

Requirements Analysis and Development of

Conceptual Design of the

Logical Design of the

Physical Construction of the
on the Spreadsheet

1
Development of the and

Entry of

Implementation and
in the

Implementation in the

and
of the Spreadsheet Model

103

This stage is carried out from the perspective of the or
The model sponsor is the person who requests that the model be built

and ensures the required resources are available. Agreement of the objectives of the
model is the responsibility of the model sponsor (Read-99). The model interpreters are
the end-users who interpret or use the output of the spreadsheet model for a particular
purpose or to make business decisions.

The first stage comprises two steps:

In the requirements of the model sponsors or interpreters are elicited and
analysed. The overall objective or purpose of the spreadsheet model is also
established. Based on the information gathered, an assessment of the nature, scale and
complexity of the model is carried out. Read and Batson (Read-99) have defined a set
of tasks under the stage of their some
of which are appropriate for application in this step. The model developer(s) have to
 decide what needs to be included in the model and what can be omitted;
 understand in outline how the model will work;
 estimate the time and resource required for the model development; and
 agree the above with the key stakeholders.

of this stage involves translating the requirements of the model
sponsors/interpreters into a set of spreadsheet model outputs. Each spreadsheet model
would normally have one or more associated outputs. The methodology insists on the
presentation of outputs on one or more separate worksheets. They should neither
appear in the worksheet containing the spreadsheet model schema, nor the worksheet
containing the model inputs.

The structure of each output is designed and implemented on the physical spreadsheet.
Only the editorial aspects of each desired output are implemented at this stage. These
include titles, headings and descriptive labels for formula and data. Each desired
output of the spreadsheet model is designed from the perspective of the model
sponsors/interpreters.

There is a need to distinguish between inputs (or numeric constants) and formulae in
the model's output(s). Having determined the various formulae required, the
underlying logic of each formula calculation and its domain are defined. This is
independent of any particular implementation platform. At the end of the
methodology, references to the and are added to the
output component of the spreadsheet model. No calculations would be present in the
outputs. However, there could be multiple outputs presenting the same information at
different levels of detail or even in different layouts, to suit a variety of purposes.

The model sponsor/interpreters do not normally make changes to the outputs when the
spreadsheet model is in operation. However, they may alter the structure or format of

104

the outputs if deemed necessary. This will not affect the integrity of the underlying
spreadsheet model, which is embedded in the

The represents the workings or calculations component of the
spreadsheet model. The purpose of constructing the is to systematically
and methodically perform the interim and final calculations based on the required or
desired model output(s). An essential characteristic of the proposed structured
methodology is the separation of inputs, calculations and outputs. The model schema,
representing the spreadsheet model's underlying logic, is therefore separated from the
inputs and outputs. From a physical perspective, the model schema is created on a
separate worksheet.

In developing the conceptual model, the first step is to distinguish between inputs and
formulae contained within the model output(s). An analysis of all formulae is carried
out in order to construct the conceptual model.

The main steps involved in this stage are as follows:

The first step involves determining the operands of each output formula. This step is
carried out as a means of determining all root formulae appearing in the outputs. A
root formula is defined as a formula that has neither direct nor indirect dependants.
They are therefore not referenced by any other formula within the spreadsheet model.

The conceptual design of each root formula is represented in the form of a
structure (Jackson-75). In a large number of spreadsheet models, it is highly possible
that there is just one root formula.

Each node of a sequence or selection (depending on its position in the Jackson
structure) represents either a formula or a piece of data. If the node is a

or it represents data (numeric constant) or input. An iterated
component that is not a leaf represents a structure (or sub-structure) that can occur
zero or more times. Such iterated components have special properties, which will be
discussed later. If an iterated component is shown as an end-leaf in the Jackson
structure, it represents a set or range of inputs that is always manipulated or operated
as a group rather than individually.

The root formulae are placed at the top of the Jackson structure, hanging from a box
containing the title of the spreadsheet model. The direct precedents of each root
formula are then positioned immediately below it, adjacent to each other. Each node is
decomposed step by step, until every end-leaf or bottom node has been identified and

105

represented. The conceptual design of the entire model schema is the combination of
the structures of all root formulae into a single Jackson structure with its root node
containing the title of the spreadsheet model.

When a top-down approach is adopted without showing duplication of nodes, the
structure of the model schema could take the form of a graph instead of the desired
tree structure. The purpose of this is to distinctly show instances of multiple
dependants of a particular formula of the model schema. This potentially results in a
structure as shown in

From the structure in 7.77, we can observe the following points:

 A is a It therefore represents a formula with no dependants.

 D and E are mutually exclusive (due to the constraint) precedents of A.

 The direct precedents of D are a of F and G.

 The direct precedents of K are a of L and M.

 M is a function of zero or more of N.

 N is a range of zero or more related inputs (constants).

 B, C, F, H, J and L are as they do not have any precedents. This shows that
they are inputs (or constants). B, C, F, H, J and L are therefore read or referenced
from the which will be constructed later.

 G has two dependants, D and E, and therefore forms a graph.

 K also has multiple dependants, E and I; another graph is formed.

106

set ectlOn

sequence

iteration

............. /
N·

'"-........... .

Figure 7.11: The Conceptual Design in Graph-form

A double-line box" II (as opposed to the single-line box) a formula or data
(numeric constant) with multiple dependants. A dashed boxL j represents a range of
related inputs (constants) treated and manipulated as a set. In order to effectively
model the conceptual and logical designs of a spreadsheet model, these notations have
been added to the conventional Jackson notations (Jackson-75) borrowed from
software engineering.

STAGE 3:
Logical Design o{the Model Schema

The logical perspective consists of a formal and implementation-free description of
the model's logic and data structures (Isakowitz-95). The purpose of Stage 3 is to
resolve sub-structures with formulae or data with multiple dependants. A formula or
data with multiple dependants normally form a graph. Structurally, the aim at this
stage is to transform all graph sub-structures in the conceptual model to trees so that
the entire model is in the form of a Jackson-like tree structure. From a more logical
perspective, the objective of performing this task is to enable the direct mapping of
the Jackson structure to the spreadsheet based on Jackson's method of mapping the
data structure diagram to a computer program.

107

shows an example of a generic conceptual design containing graph sub-
structures. For instance, there is a loop in the relationships connecting E, G, I and K,
so that we no longer have a tree form. In this chart, K is a precedent of both E and I.
We can turn the graph into a tree-structure. In order to accomplish this, two important
steps prescribing the rules have to be observed:

By performing this task, the graph structure is resolved into a tree-structure. However,
in order to prevent multiple occurrence of the entire sub-structure, only the root node
of each duplicated sub-structure appears in the logical design of the model at this
point. Their precedents are therefore not included in the model.

Based on 7.72, G and K are duplicated in order to resolve the graph structure,
into a tree structure. The precedents of G and K are not included in the model. K is
not even shown as a precedent of G in order to comply with the rule that precedents of
duplicated nodes are not included in the main structure of the logical design.

The Logical Design of the Main Structure Based on

108

If the duplicated node is a therefore has no precedents, there is no need to
define it as a separate module. As a rule, only a node or formula with precedents can
be defined as a common module.

The Logical Design of Module G (Based on 2)

The Logical Design of Module K (Based on

Based on and 7.73 the sub-structures G and K are defined as
separate modules, each of which will occur once in the implemented spreadsheet
model. This is discussed more elaborately in

The conceptual design shown in has now been transformed into a logical
design consisting of three modules, represented by three separate Jackson structures.
The modules consist of a main or primary module and two secondary modules.

shows the relationship between the modules.

109

Relationship Between Modules

In general, we can always reduce a graph structure to a tree by this method, which
conveniently produces a unique modularisation of the spreadsheet model.

The logical design of the model (represented as Jackson tree-like structures) is
systematically mapped onto the physical spreadsheet based on rigorous rules
prescribed by the methodology.

To maintain the structure modelled in the logical design in the spreadsheet view, the
indentation principle is used, both on the row labels and on the corresponding values
themselves. The values are indented by assigning a spreadsheet column to each level
of indentation. These columns can be referred to as Based on the
generic logical design shown in and 7.75 the corresponding
structure of the spreadsheet view at this stage is shown in

110

Figure 7.15: Model Schema Layout

Based on D is a function of F and G, while G is a function of H and I.
Therefore, the precedents of Formulao are F and G, whereas the precedents of
Formulae are H and I.

It is important to control data integrity and maintain the consistency of data in
information systems. A frequent error committed by users is the accidental
overwriting of formulae. This is usually due to the fact that data values (or inputs) and
the formulae that reference them are placed in close proximity to each other and users
are sometimes unable to distinguish between the two.

Data input represents a special problem in spreadsheet design, with its own special
requirements. The technique proposed to overcome this problem is to put all inputs in
a separate worksheet. This is called the This strategy is similar to the
method introduced by DiAntonio (DiAntonio-86). DiAntonio's method advocates the
isolation of by splitting the spreadsheet into two parts, one for and one
for the DiAntonio part corresponds to our component.

The end-users responsible for data entry enter data in the input section only. The
elements of the input section are based on the of the Jackson structures. The

ill

input component contains all and used in the spreadsheet model. It
is not always necessary to explicitly separate the two. Benham (Benham-93)
recommends that this section be partitioned into

The design of this part of the user interface should be as free from constraints as
possible; so as not to hinder the main objective: ease of use and absence of data errors.
We are therefore, quite at liberty to put all data input cells into unstructured modules,
since there are never any dependencies between them. Any dependency relationship
in spreadsheet involves a calculated cell, and either other calculated cells or data input
cells. However, they do not exist between data input cells and other data input cells.

The only holds absolute copies of the corresponding data in the input
section. It is also protected as a precaution against any overwriting of data, and can
only be manipulated by the programmer or model developer.

Based on the identified in the Jackson structures, the section can be
created. The input section is constructed on a separate worksheet and should be
labelled as such. The data input end-users must only be allowed to manipulate the
input section for the entry and update of data. They are responsible for entering all the
inputs to the spreadsheet model in this section. Based on

and 7. the inputs to the model are B, C, F, H, J and L.

A problem that can be anticipated at this stage is the difficulty in adding or deleting
data from the section while having the changes reflected in the In
view of this problem, the methodology requires that a group of related inputs be
defined as a range and only the range is referred to in the model schema. A reference
to a group of related inputs or an input set (range) is shown in the Jackson structure by
a shown as a dashed-line box and represented as an iterated component.

Based on N represents a group of related inputs. Therefore, the
elements of N are defined as a range in the input component. It can also be observed
in that M is a function of N. In the model schema, M references the
range N. The elements of N are not physically present in the model schema. This way,
any changes that take place within N will not affect the integrity of the formulae or
calculations in the model schema. shows the input component derived
from the logical design of the spreadsheet model.

112

Input Component

All constants (like or should be held in the input
section and referenced or looked up by formulae in the structure and workings section
of the model. True constants that will never change (e.g.
should be protected as a precaution against accidental overwriting. All constants can
be placed in a separate sub-section within the input component. As an additional form
of quality assurance, inputs should be subjected to programmed validation checks to
reject any entry that falls outside a permissible range of acceptable values. The input
component or data entry modules are accessible to the builder, maintainer, auditor
with test authorisation, and user with data entry authorisation.

The structured spreadsheet modules represent the model structure or
calculation/workings section. The structured spreadsheet modules also facilitate
auditing and comprehension of the composition/meaning of calculations (expressed as
formulae).

The various formulae can now be physically constructed and all relationships
implemented. This stage involves constructing the various formulae required in the
model structure. The outline or layout of the model structure has already been
produced and will be used as a basis for the creation of the appropriate formulae.

Each calculation would correspond to a unique label. This calculation must take the
form of a formula which references other formulae and inputs (from the input
component). This task can and must only be carried out by the model developer. Each
and every formula is subsequently as a precaution against any accidental
overwriting of formulae, especially by the data entry end-users.

113

The should only contain simple formulae - if necessary,
complex calculations should be broken down into simple stages over a series of cells.
This way, even complex calculations will be easy to understand - especially if
annotated (Buler-97). Relatively complex formulae can be annotated, either with the
spreadsheet program's notes feature, to explain how key calculations work (Buler-97).

7.17: Model Schema

There are two distinct types of structures within the There are fixed
and volatile parts of the model schema. The formulae and relationships between
formulae are all fixed and can only be changed by the model developer. On the
contrary, there can be iterations of structures or parts of the model which can be added
or removed. In order to facilitate this, there has to be a mechanism to add or delete
iterated structures or sub-structures. These can be identified from the logical design of
the spreadsheet model schema. The addition/deletion of such iterated structures must
be consistent with the addition/deletion of the corresponding inputs.

The comprising structured spreadsheet modules facilitate auditing and
comprehension of the composition/meaning of calculations (expressed as formulae).
They are the interface accessible with read/write access to the model developer
(builder and maintainer), and with read access for the user and auditor.

114

References to corresponding in the and in the
can at this stage be entered into the relevant cells of the

There should be organisational standards in place for the testing, documentation, and
maintenance or administration of spreadsheet models (McMickle-89, Simkin-87: cited
in Isakowitz-95). This stage brings the spreadsheet model development process to a
conclusion. It consists of three principal steps:

As this stage is not considered a core aspect of the methodology, each of its
constituent steps will be addressed only briefly and in passing. It is recommended that
conventional software engineering approaches and principles be used for the testing,
documentation and administration of the spreadsheet model.

of this final stage requires that the entire spreadsheet model be rigorously
tested before it goes into operation. The spreadsheet model is tested with a
comprehensive set of test data. Ray Butler (Butler-97) proposes that the spreadsheet
model should also be reviewed by someone other than the developer for errors before
being brought into use.

In 2, documentation of the spreadsheet model is incorporated into the model
itself, typically on a separate worksheet. Kee (Kee-88) states that documentation
materials provide the instructions needed to apply a template properly, as well as the
technical details needed to understand its underlying structure. Without adequate
documentation, it is often easier to develop a new template than to review somebody
else's program (Kee-88).

addresses the administration of the spreadsheet model. After the spreadsheet
model goes into operational use, proper administration of the spreadsheet model is
essential. Mason and Keane (Mason-89) have proposed that a
regulates and monitors spreadsheet modelling activities across the organisation.

115

7.4 Application of the Proposed Methodology

In order to illustrate the application of the methodology in practice, three different
spreadsheet models are used as examples.

In this example, the methodology is applied in the construction of a spreadsheet
model comprising a single module (as defined by the methodology). It is based on a

(Ward-96). The original
model is shown in

This is a simple model which does not require resolution of graph structures, which
potentially result in the creation of separate modules, and recursive relationships.
Most of the essential concepts and principles of the methodology are demonstrated,
except the technique of Module formation is shown in the second
example, based on a

T Howe Ltd

Sales
Cost of goods sold

Opening stock
Purchases
Carriage inwards

Closing stock
Gross profit

Expenses
Salaries
Rates and occupancy
Carriage outwards
Office expenses
Sundry expenses
Depreciation: Buildings

Equipment
Directors' remuneration

Net profit
Unappropriated profits from last year

Appropriations
Proposed dividend
General reserve
Foreign exchange

Unappropriated profits carried to next year

40,360
72,360

1,570
114,290
52,360

18,310
4,515
1,390
3,212
1,896
5,000
9,000
9,500

10,000
1,000

800

135,486

-

61,930
73,556

52,823
20,733
15,286
36,019

11,800
24,219

The Conventional Layout

The application of the proposed methodology in the analysis, design and
implementation of this model is presented in detail

116

In this example, the methodology is applied in the construction of a spreadsheet
model composed of multiple modules. In this respect, it is deemed to be a more
complicated model than the spreadsheet model used in the first example. It is based on
a (Slater-90). The original model is shown in

and an abridged version of the same model in

The technique of modularisation, a critical and integral part of the proposed
methodology, is demonstrated through this example, in addition to the other features
and characteristics of the methodology.

Table as Post-tax income distribution for 1975/6 and 1985/6

675 but under 750
750 but under 1000

1000 but under 1250
1250 but under 1500
1500 but under 1750
1750 but under 2000
2000 but under 2500
2500 but under 3000
3000 but under 4000
4000 but under 5000
5000 but under 6000
6000 but under 8000
8000 but under 10 000

10000 and more

1750 but under 2000
2000 but under 2500
2500 but under 3000
3000 but under 3500
3500 but under 4000
4000 but under 4500
4500 but under 5000
5000 but under 5500
5500 but under 6000
6000 but under 7000
7000 but under 8000
8000 but under 10000

10 000 but under 12 000
12 000 but under 15 000
15 000 but under 20 000
20000 and more

357
1350
1780
1840
1850
1750
3270
2830
4150
1670
575
377
97
57

-

635
1470
1410
1670
1670
1530
1490
1280
1170
2110
1760
2560
1400
956
616
280

Reproduced

255
1190
2000
2530
3000
3280
7350
7760

14300
7360
3120
2550
852
725

1190
3290
3850
5420
6250
6510
7070
6700
6710

13700
13100
22900
15300
12700
10500

7630

With the

1.63
6.15
8.11
8.38
8.43
7.97

14.90
12.89
18.90
7.61
2.62
1.72
0.44
0.26

2.89
6.68
6.41
7.59
7.59
6.95
6.77
5.82
5.32
9.59
8.00

11.63
6.36
4.34
2.80
1.27

permission of the

%

1.63
7.78

15.88
24.27
32.69
40.66
55.56
68.45
87.35
94.%
97.58
99.30
99.74

100.00

2.89
9.57

15.97
23.56
31.15
38.10
44.87
50.69
56.00
65.59
73.59
85.22
91.58
95.93
98.73

100.00

0.45
2.11
3.55
4.50
5.33
5.83

13.06
13.79
25.41
13.08
5.54
4.53
1.51
1.29

0.83
2.30
2.70
3.79
4.38
4.56
4.95
4.69
4.70
9.59
9.17

16.03
10.71
8.89
7.35
5.34

0.45
2.57
6.12

10.62
15.95
21.78
34.84
48.63
74.04
87.12
92.67
97.20
98.71

100.00

0.83
3.14
5.83
9.63

14.00
18,56
23.51
28.20
32.90
42.49
51.67
67.70
78.41
87.31
94.66

100.00

Controller of Her Majesty's Stationery Office.

The Original Model

As the aim here is to illustrate how the proposed methodology would be applied in the
construction of the above model, its data content is reduced for simplicity. We are
more concerned about the structure of the model rather than its data. The abridged
version of the model is shown in

117

Post-tax

675 but under
750 but under

1000 but under
1250 but under
1500 but under

income

750
1000
1250
1500
1750

distribution

357
1350
1780
1840
1850 -

for 1975 and 1985

<

255
1190
2000
2530
3000

% % %

1750 but under
2000 but under
2500 but under
3000 but under
3500 but under

2000
2500
3000
3500
4000

635
1470
1410
1670
1670

1190
3290
3850
5420
6250

Abridged Version of the Original Model

In 2, the application of the proposed methodology in the
analysis, design and implementation of this model is clearly demonstrated.

118

In this example, the methodology is used to build a
instead. Unlike the previous example, this model contains

recursive relationships. The model is based on the conventional layout shown in

7.20: Trading and Profit and Loss Account for Several Years

The application of the proposed structured methodology in the analysis, design and
construction of this model is distinctly demonstrated

119

7.5 Potential for Quality Improvement

This section discusses the proposed methodology's potential for enhancing the quality
of spreadsheet models. There are various features and characteristics within the
methodology that contribute to the quality improvement of the models.

The proposed methodology specifies a systematic and disciplined method for
analysing, designing and building spreadsheet models, and a standard structure for the
models. According to Kee (Kee-88), such an approach forces developers to build their
applications within a logical framework. This simplifies spreadsheet construction and
enhances reliability.

Without standards and a structured methodology in place, model developers would
develop spreadsheets in a wide variety of styles and layouts. Depending on the nature
of the models and the competence of the model developer, the models would vary in
terms of their comprehensibility, reliability and maintainability. By strictly
conforming to the proposed structured methodology, a group of model developers
asked to independently construct a spreadsheet model, should, generate models with
virtually identical structures. These models would also possess the various desirable
attributes of spreadsheet models. This gives scope for peer review at the logical
design stage. The fact that there is a standard for logical design (using
structures) means that design errors can be spotted much earlier in the process. This is
the essence of quality software production. Moreover, the structure diagrams (logical
model) also provide certain achievable sub-goals for the development. This also
facilitates peer group walkthroughs and review at an early stage in the design, and has
a benefit for quality control of the spreadsheet models.

The methodology essentially involves structured analysis of data, based on
It is shown that this analysis allows a straightforward modularisation, and

that individual modules may be represented with indentation in the
form of structured programs. The benefits of this structured format are increased
comprehensibility, ease of maintenance, and reduction in errors. The model can be
interpreted in an unambiguous way. The methodology also has the capacity to provide
a global sense of the structure of a spreadsheet model using Jackson structures.

According to Brown and Gould (Brown-87), formulae are represented in a location
that is physically separate from the spreadsheet itself and that the user typically has a
"window" onto only one formula at a time. They have stated that an improved
interface might make formulae more visible and salient in the interface, and might
represent formulae integrated with, rather than separate from, the spreadsheet itself.
The proposed methodology caters for these requirements by organising the formula
and its operands in a structured manner, and in close proximity. This makes the
formulae highly visible in the interface. The inter-relationships between the various
formulae could also be easily inferred.

shows the spreadsheet model resulting from the application of the
proposed methodology based on

120

7.27 Model Schema

presents a graphic representation of the dependencies between
elements of the model schema. The logic of the model is easily comprehensible as it
can be easily seen that each formula is a function of elements in the next virtual
column.

7.21 Data Dependencies

Based on it can be noticed that both the semantics and the data are
clarified in this layout. For example, we can see straight away on the semantic level
that is derived from three figures:

and

On the data level we see that is made up from 20,733,
Likewise, we see immediately (from the asterisk *) that references an
input range from the input component. Notice also that columns in the spreadsheet
show figures on the same semantic level, enabling valid comparisons between figures
to be made. For example, column D shows

and These figures give a valid impression of the state of the
at this level of detail. If we were to include a

figure from a different level, e.g. (from column G), it would confuse the
picture, since it has already been included in

121

Referring to or 7.27 it is beyond any doubt that the use of
and make it far more straight-forward to make sense of

and comprehend the composition of formulae. In order to further enhance the
comprehensibility and integrity of the spreadsheet model, each data value and formula
in the input component and model schema is assigned a unique name. These names
are then used as operands within formulae, instead of cell addresses. If this technique
is applied, the formula view of the model schema will appear as displayed in

It can be seen that in the formulae or references are more
comprehensible as they are in natural language.

f

7.21 Model Schema

As mentioned in of the methodology, a common error committed by users is
the accidental overwriting of formulae. The technique proposed to overcome this
problem is to put all inputs in a separate worksheet. This is called the It
is also protected as a precaution against any overwriting of data. There are reasons
why cells for data input and assumptions should be grouped together in an input
section, separate from the structured modules in the model schema. One reason is to
do with the utmost importance of obtaining accurate data entry. Kee (Kee-88)
supports this by stating that using a central data entry area makes data entry easier and
helps to prevent input errors. A second reason is that input cells are often referred to
by more than one calculated cell.

7.6 Summary

This chapter has described and presented the proposed structured methodology for the
development and integrity control of spreadsheet models. This was preceded by a
discussion of the development and synthesis of the methodology from the material
considered in The methodology's potential for enhancing the quality of
spreadsheet models has also been explained.

It has been found that most of the software engineering principles discussed in
are applicable to the development of spreadsheet models, and are therefore,

used in the synthesis of the proposed methodology. Therefore, the methodology is
based on a systematic approach that encompasses all the stages and activities of

122

spreadsheet model development. Various methods, tools and techniques are
incorporated within the methodology, along with models, notations, rules and design
advice.

In the proposed methodology, a diagrammatic representation of the logical design of
the spreadsheet model is produced using Other important software
engineering principles and techniques have also been applied in the various stages of
the methodology. They include

and

The proposed structured methodology consists of eight principal stages:
 Requirements Analysis and Development of

Conceptual Design of the
Logical Design of the
Physical Construction of the on the Spreadsheet

 Development of the and Entry of
Implementation of and in the
Implementation in the

and of the Spreadsheet Model

The application of the methodology is demonstrated using three different examples of
spreadsheet models. They are a

a and a

The proposed methodology has various benefits in terms of quality improvement. It is
based on a disciplined and standard approach to spreadsheet model development
within a logical framework. The creation of standard model structures facilitates peer
review, enabling the early detection of errors. The logic of the model can be easily
understood from a clear representation of the dependencies between model elements.
The structured format for spreadsheet models produced in the methodology can
increase the comprehensibility, maintainability and accuracy of the models.

123

CHAPTER 8
EVALUATION STRATEGY AND EXPERIMENTS

8.1 Introduction

In order to evaluate the effectiveness of the proposed methodology presented in
7, a series of experiments had to be conducted. An analysis of the results of

these experiments is used to assess the methodology's potential for integrity control of
spreadsheet models.

This chapter begins by putting forth a plan for the evaluation of the proposed
methodology based on experimental trials. The underlying evaluation strategy of the
experiments is also discussed. The actual experiments undertaken are subsequently
described in detail. At the end of the chapter, a tabulated summary of the experiments,
their subjects, and their different aims is presented.

The experiments are aimed at testing the various features of the proposed structured
methodology. The series of experiments involve a range of spreadsheet models used
in educational institutions and industry. The elements of the methodology are tested
on diverse groups of students. Two different strategies are formulated to evaluate the
quality of the proposed methodology for spreadsheet model development. Various
aspects of the experiments are meticulously studied in planning the experiments.

8.1.1 User Groups or Participants

Ideally, the methodology should be tested on spreadsheet users, of varying levels of
spreadsheet literacy, in both business and academia. It has been virtually impossible
to obtain consent to conduct trials in business organisations due to various reasons. In
some cases, there were rules and policies in place against such experiments,
conducted by external individuals or organisations. In others, staff were unwilling to
participate in the trials due to the assumption that these experiments would consume
considerable time and effort.

Referring to past experiments undertaken, as shown in (Panko-96,98), it
has been found that most of the participants of such tests were students at an
institution associated with the author(s). In most cases where the subjects were
industry or commercial users, the experiment was either conducted by the particular
organisation or the information derived from the normal operations of the organisation
and published by the company itself.

124

Studies on Spreadsheet Errors

Based on these findings, it is clear that carrying out tests within academic institutions
is the most feasible option. Tests are therefore, planned to be carried out at a London-
based University, involving different groups of students. As learnt from previous
experiments, an advantage of using students is that we are normally aware of their
level of computer/spreadsheet literacy and the experiments can be better controlled.

Three different groups of students have been selected as participants for the proposed
experiments. They are as follows:
 Undergraduates
 Post-graduate students
 Students on a short course designed primarily for professionals in industry

125

8.1.2 Types of Errors

Ideally, the tests should demonstrate the capacity of the proposed structured
methodology to address all types of spreadsheet errors. The taxonomy or
classification of spreadsheet errors presented in is used as a basis for
organising tests for as many different types of errors as possible.

8.1.3 Spreadsheet Models

The spreadsheet models selected and used for experimental purposes should be
common business and financial models. The models should address the different
features of the proposed methodology. Moreover, the models should have the capacity
to be used to test for as many different types of errors as possible.

The spreadsheet models selected for the experiments are as follows.
 A for a particular year (Wood-96)
 A for several years
 A (Slater-90)
 A (Read-99)

8.2 The Evaluation Strategies

Two different strategies have been developed to evaluate the quality of the proposed
methodology for spreadsheet model development.

8.2.1 Error Prevention

The first strategy for testing the quality of the proposed methodology is based on error
prevention. It involves comparing the occurrence of errors in spreadsheet models
developed based on the proposed methodology to the occurrence of errors in models
built using conventional unstructured methods. The aim of this strategy is to establish
whether or not there is a material difference in error rates between spreadsheet models
produced using the two different approaches. The hypothesis is that users commit
significantly fewer errors by adopting the proposed structured methodology. The first
experiment is based on this strategy while the subsequent three experiments are based
on a different strategy (error detection).

8.2.2 Error Detection

The second strategy for evaluating the effectiveness of the proposed methodology is
based on error detection. It involves comparing the probability of detecting errors in
spreadsheet models developed based on the proposed methodology to the probability
of detecting errors in models constructed based on conventional unstructured
methods.

126

Errors are deliberately seeded into the spreadsheet models. The aim of this strategy is
to establish whether or not there is a significant difference in the probabilities of error
detection between spreadsheet models produced using the two different approaches.
The hypothesis is that users are able to identify significantly more errors seeded into a
model developed using the proposed structured methodology. This is a reflection of
its comprehensibility. It is particularly important for audit, review and update
purposes. Apart from the first experiment, the subsequent three experiments are based
on this strategy.

8.3 The Experiments Undertaken

8.3.1 Experiment 1

This experiment was carried out in two different stages, each involving two groups of
students at a University. The purpose of the experiment was to compare two different
approaches to the development of a single-module spreadsheet model. The first
approach was based on conventional unstructured methods for spreadsheet model
development while the second approach was based on the proposed structured
methodology. This experiment was based on the first testing strategy, described
earlier. The spreadsheet model used is based on a

for a particular year (Wood-96).

The of the experiment involved the development of a spreadsheet model
without any guidance or support. The participants had to employ suitable methods
based on personal experience or discretion, and carry out the exercise independently
under time constraint.

Subjects were given the desired output of the model as shown in on a
separate worksheet labelled In order to create the spreadsheet model based on
the required output, they were provided with all the formulae needed in a worksheet
labelled as displayed

Desired Output

127

They were required to systematically organise and perform the appropriate
calculations in a worksheet called which was blank. This was their
principal task. The calculations were based on the elements in the desired The

sheet should contain all required data labels (e.g.
etc.) as well as their associated numeric values, either as an

or They were asked to try and present all the calculations within the
same structure, so that the relationships between them would be clearer.

In order to carry out some of the calculations, they would require certain inputs. All
the inputs required were provided in a worksheet labelled This is shown in

Participants were allowed to reorganise or restructure the
inputs.

Finally, participants of the experiment had to use the results of the calculations to
replace the unknown values in the output, denoted by a question mark (?). They were
told not to alter the structure of the output as this was assumed to be the output style
required by the end-user. The relevant cells were therefore protected against
accidental overwriting or alteration.

A total of (most of whom
were working in industry) took part in this experiment. Two tests were carried out in

was carried out on a group of 22 The students
were pursuing a taught masters programmme. Most of them had graduated in other
disciplines and had limited prior knowledge of information systems.

This test was split into two sessions. Both sessions involved the same set of
participants carrying out the same task(s). Therefore, each participant had to build the
same spreadsheet model twice, once in each session. The purpose of having the
participants rebuild the same model was so that it can be used as a in the
experiment.

The was performed on a group of 12 Most of the
students were employed on a full-time basis in industry. Each participant had to build
the spreadsheet model without having had a lesson on the proposed methodology. Due
to time constraint, participants were not asked to rebuild the same model for control
purposes. However, in the results of this set of participants are compared
against the results of another group of short course participants with a similar
background.

The of the experiment involved the development of the same
spreadsheet model based on the However,
before participants engaged in the experiment, they were given a tutorial/lesson on

128

employing the proposed structured methodology for building and structuring a single-
module spreadsheet model. During the tutorial, no references were made to elements
of the spreadsheet model used in the experiment. Instead, participants were taught the
generic algorithm and steps involved. Where deemed necessary, other examples were
used. This stage too was composed of two tests.

The was carried out on a different group of 20 The
students were pursuing the same taught masters programmme. As carried out in

this test was also divided into two sessions. Both sessions involved the same group
of participants but they had to carry out a different set of tasks.

In the each participant had to first build the spreadsheet model using a
method they were familiar with. This was not based on any structured methodologies
and was exactly the same as the experiment in None of these participants had
however taken part in the previous tests. The purpose of this exercise was to ensure
that the errors committed by this group of students were in fact consistent with those
produced by the previous group (in

In the the same group was first given a lesson/tutorial on using the
proposed structured methodology to construct a single-module spreadsheet model.
They subsequently had to re-construct the spreadsheet model based on the proposed
methodology. Ideally, complying with the algorithm, steps and rules of the
methodology, they were expected to produce a schema as shown in

was conducted on a group of This was a different
group of students but who were pursuing a different offering of the same short course.
Moreover, they had a similar background, in that they were also mainly holding
professional positions in industry. The participants were asked to create the
spreadsheet model, having had a lesson on building spreadsheet models using the
proposed methodology. This was similar to of the previous test 7).

8.3.2 Experiment 2

This experiment was based on the second evaluation strategy (error detection) and
carried out in two stages. A total of took part in this experiment.
The students were in two different groups. The first group of 55 students took part in

of the experiment while the second group of 49 students participated in
the of the experiment.

Both groups had to detect and correct a total of 12 errors that had been seeded into a
spreadsheet model. They were given the same amount of time to complete the
exercise. The model was based on a

However, there was a fundamental difference between the layout or structure of

129

the model used by the first group (in and the model used by the second group
(in

In this stage, the participating group consisted of 55 and were presented the
spreadsheet model based on a conventional layout as presented in Their
task was to identify the twelve errors that had been seeded into the model. As most of
the students did not possess adequate knowledge of accounting, all formulae related to
the model were provided. This is shown in They were not
aware of how many errors the model contained. shows the
model with the errors highlighted while displays the
formula view of the model. In the correct version of the
model is given.

8.3: Model with Hidden Seeded Errors (Conventional Layout)

130

In 2, the group of participants was made up of The experiment
involved the same model but it had been built and structured based on the proposed
methodology. The same errors had been seeded into this model as well, and
participants had to independently detect and correct them. They were given a brief
and general lesson/tutorial on how to interpret a spreadsheet model based on the
proposed methodology without any references to the particular model used.

The model given to the students (with the seeded errors) is shown in The
input component of the model is displayed in

shows the same model with the errors highlighted while
displays the formula view of the model. In

the correct version of the model is presented.

Model with Hidden Seeded Errors (Structured Layout)

131

8.3.3 Experiments

This experiment was based on the second evaluation strategy (error detection) and
carried out in two stages. A total of (pursuing the same
course) and (also on the same short course) participated in
this experiment. Two identical tests were performed in each stage. Each test involved
a different subset of students. Therefore 4 different groups of subjects/participants had
to detect and correct a total of 10 errors that had been seeded into a spreadsheet
model. The difference between the two models was their structure or layout. All
participants were given the same amount of time to complete the exercise. The model
used in this experiment was based on a (Slater-
90). The original model was modified slightly to decrease its size.

In the first stage of the experiment, the spreadsheet model was presented based on the
original (conventional) layout (Slater-90). The model is shown in They
had to identify a total of 10 errors that had been seeded into the model. The first test
involved a group of 19 while the second test was conducted
on a group

Model with Seeded Errors (Conventional Layout)

It was assumed that participants of the experiment did not have adequate knowledge
of the mathematics required for calculations in the model. Therefore, all formulae
needed to comprehend the various calculations were provided. This is shown in

Subjects in both tests were unaware of the number of
errors that had been seeded into the model. contains the
model with the errors highlighted while displays the
formula view of the same model. In the correct version of
the model is given.

132

In the second stage of the experiment, the spreadsheet model was re-designed and re-
structured according to the proposed methodology. They same 10 errors were then
deliberately seeded into the model. The participants of the experiment at this stage
were given a brief and general tutorial/lesson on how to interpret a spreadsheet model
based on the proposed methodology without any specific references to the particular
model used.

The first test was performed on a different group of 22 while
the second test involved a group of (on a different offering
of the same short course pursued by subjects of in

The model given to the students (with the seeded errors) is shown in The
model has been created based on the proposed methodology. However, cell addresses
are used in formulae/references instead of meaningful labels, as recommended by the
methodology. The input component of the model is displayed in

shows the spreadsheet model with the errors
highlighted while contains the formula view of the model.

the correct version of the model is presented.

133

continued

134

Model with Seeded Errors (Structured Layout)

135

8.3.4 Experiment 4

This experiment was very similar to the previous experiment The
only difference was that a different spreadsheet model was used. However, this was
also a common business model, a (Read-99). The model was abridged
before creating it on a spreadsheet, to make it less time-consuming to work on. The
original model is displayed in while the abridged version
of the model (spreadsheet view) is shown in This is,
therefore, the correct, error-free version of the model.

The experiment was carried out in two stages and involved a total of
(pursuing the same course) and 23 (also on

the same short course). Two identical tests were performed in each stage. Each test
involved a different subset of students. The task of the 4 different groups of
participants was to detect a total of 10 errors that had been seeded into the spreadsheet
model. All participants were given the same amount of time to complete the exercise.

In the first stage of the experiment, the spreadsheet model was presented to
participants based on the conventional layout. 10 errors had been deliberately seeded
into the model. This erroneous model is shown in For the benefit of
students not familiar with the interpretation of balance sheets, a set of relevant
formulae was provided. This is shown in In

the errors are highlighted and in the
formula view of the erroneous model is displayed, with the flaws highlighted.

Two identical tests were carried out on different sets of participants. The first test
involved a group of 24 while the second test was conducted
on a group of 12

136

Erroneous Model

In the second stage of the experiment, the spreadsheet model was re-designed and re-
structured according to the proposed methodology. The same 10 errors were then
seeded into the model. However, cell addresses are used in formulae/references
instead of meaningful labels, as recommended by the methodology. This model (with
the seeded errors) is shown in The input component of the model is
displayed in

As done in the previous experiment, the students taking part in the experiment at this
stage were given a brief and general tutorial on how to interpret a spreadsheet model
based on the proposed methodology without any direct or specific references to the

used in the experiment. The first test was performed on a different
group of 20 while the second test involved a group

(on a different offering of the same short course pursued by
subjects of in /).

shows the spreadsheet model with the errors highlighted
while contains the formula view of the model. In

the correct version of the model is displayed.

137

Structured Model with Seeded Errors

138

8.4 Summary

provides a tabulated summary of the experiments, their subjects, and their
different aims. These are also cross-referred to the research questions specified in

is different from the other three experiments. Therefore, it
has a different aim and tries to address the research questions differently. On the other
hand, as and are very similar in nature, they have the same aim and
attempt to address the research questions in the same way.

continued ...

139

continued

140

Tabulated Summary of Experiments

CHAPTER 9
ANALYSIS OF RESULTS

9.1 Introduction

This chapter presents a detailed analysis of the results of the experiments conducted.
In order to assess and establish the quality of the proposed structured methodology,
four different experiments were carried out. The results of these experiments are
analysed and presented in this chapter. The experiments themselves are described in
detail in

9.2 Results of Experiments

9.2.1 Experiment 1

As described in the experiment was carried out in two stages. Each stage
consisted of two tests. Each test was performed on a different set of subjects. The first
test was composed of two sessions. displays a summary of the results
obtained.

Summary of Results from

The following abbreviations are used to refer to the various parts of this experiment:

Stage 1 - Test 1 - Session 1
SI S2 Stage 1 - Test 1 - Session 2

Stage 1 - Test 2
52 Stage 2 - Test 1 - Session 1
S2 S2 Stage 2 - Test 1 - Session 2
S2 T2 Stage 2 - Test 2

142

The purpose of this experiment was to establish whether adoption of the proposed
structured methodology could result in a significant reduction in the number of errors
committed when producing a spreadsheet model. This is compared against
development of the model using an unstructured or conventional approach.

The results of were analysed to test this hypothesis. Firstly, the two sets of
correlated dependent samples [SI SI and S2] and [S2 and S2 S2]
were assessed. In order to find out if subjects performed significantly better in

of using the proposed structured methodology, compared to their
performance in of (using an unstructured approach), a

was carried out. This is the non-parametric equivalent
A could not be done as normality tests showed that the data from

S2 were not normally distributed. The results of the normality tests are shown
in and

The revealed that subjects did in fact commit significantly
fewer errors in of where the proposed structured methodology was
adopted in creating the spreadsheet model. shows the results of the test.

shows a plot of the data obtained from S2 and S2 S2. It can
be clearly seen that on the whole, subjects in S2 S2 committed fewer errors
compared to subjects in S2 The raw data from S2 and S2 S2 are
presented in

Wilcoxon Signed Rank Test (in

Plot of Data from S2 Tl SI and S2 Tl S2

An assessment of the results of the correlated dependent samples and
S2 was subsequently undertaken to establish whether there was a significant
difference between the performance of participants in and S2. Any
significant reduction in the number of errors could be attributable to the repeated task.
A was carried out as normality tests showed that the data from both
samples were normally distributed. The results of the normality tests are displayed in

and

The revealed that there was no significant difference between the
number of errors committed by subjects in and the same subjects in
S2. The conclusion that can be drawn from this is that subjects who re-created the
same model using the proposed methodology produced significantly fewer errors
compared to participants who re-created the first model based on their own approach.
The results of the are shown in shows a
plot of the data obtained from and S2. It is obvious that there is no
significant difference between the number of errors committed by subjects in
SI and subjects in S2. The raw data from and S2 are given in

144

Paired T-Test Result (in

-m-

Plot of Data from SI Tl SI and SI Tl S2

The data from S2 and S2 S2 were then compared. As mentioned previously,
subjects in S2 repeated the creation of the first spreadsheet model using their
own approaches and techniques. On the contrary, in S2 Tl S2 a different set of
subjects repeated the construction of the first model having had a tutorial on the
proposed structured methodology. A normality test has demonstrated that the data
from S2 Tl S2 is not from a normal distribution. This is shown in

As such, a non-parametric test for independent samples had to be performed.
A carried out distinctly showed that participants using the
proposed methodology (SI Tl S2) committed significantly fewer errors compared to
subjects adopting their own methods (S2 Tl S2). The results of the

145

can be seen in shows a plot of the data obtained
from SI Tl S2 and S2 S2. It can be distinctly seen that on the whole, subjects in
SI Tl S2 committed fewer errors compared to subjects in S2 Tl S2. The raw data
from SI Tl S2 and S2 Tl S2 are presented in

Group 1: SI Tl S2 Group 2: S2 Tl S2
the l-tailed P-Value is evidently far less than 0.01, there is proof of a highly significant

reduction in the number of errors made by subjects in S2 Tl S2.

Mann-Whitney U Test Result (in

Plot of Data from SI Tl S2 and S2 Tl S2

146

Finally, the results of were analysed. Test 2 was conducted in two stages. In
7, a group of short course students had to build a spreadsheet model without any

help or guidance. In 2, a different group of short course students were given a
tutorial on the proposed methodology prior to the creation of the spreadsheet model.

A non-parametric test for the independent samples had to be performed instead of a
as the data from S2 T2 (Stage 2 - Test 2) was found not to be normally

distributed. A normality test, however, showed that the data from SI T2 (Stage 1 -
Test 2) was in fact normally distributed, although this did not make a difference. The
results of the normality tests can be seen in and

The performed provided extremely strong evidence that
subjects using the proposed methodology (S2 T2) committed significantly fewer
errors compared to participants using their own methods and techniques (SI T2). The
results of the are shown in shows
a plot of the data obtained from SI T2 and S2 T2. It can be clearly seen that on the
whole, subjects in S2 T2 committed fewer errors compared to subjects in SI T2. The
raw data from SI T2 and S2 T2 are presented in

Mann-Whitney U test result (in

147

Plot of Data from SI T2 and S2 T2

9.2.2 Experiment 2

is elaborately described in
The experiment was conducted in two stages. Each involved a different

group of under-graduate students. However, they were all from the same school and at
the same academic stage. displays a summary of the results obtained.

Summary of Results from

The first step was to perform normality tests on the two sets of data to determine
whether each sample was from a normal distribution. The normality tests
demonstrated that the data from both samples were NOT normally distributed.

148

Therefore, a for independent samples had to be carried out
instead of a The results of the normality tests are shown in

and

The non-parametric test was carried out on the two independent
samples, from and 2, to establish whether subjects participating in the
experiment at were able to detect significantly more errors that had been
seeded into the spreadsheet model. The hypothesis was that subjects of the experiment
at would be able to accomplish this due to the fact that the spreadsheet model
had been built based on the proposed structured methodology. On the contrary, the
model used in had been constructed based on a conventional, unstructured
approach.

The results of the test proved the hypothesis by providing very
strong evidence that subjects in had detected significantly more seeded errors
compared to subjects in This can be regarded as testimony to the increased
comprehensibility of the model built based on the proposed methodology. The results
of the t/test are displayed in shows a
plot of the data obtained from and It can be distinctly seen that on the
whole, subjects in detected more errors compared to subjects in The
raw data from and are given in

Mann-Whitney U Test Result (in

149

Plot of Data from Stage 1 and Stage 2

9.2.3 Experiment 3

In two tests were carried out. Each test involved a different group of
subjects belonging to the same subject type, i.e. post-graduate students, under-
graduate students, etc. In both and 2, subjects had to detect seeded errors in a
spreadsheet model built using a conventional approach, in In 2, a
different set of participants would try and identify the same errors seeded into the
model re-structured based on the proposed methodology. This is preceded by a brief
tutorial. The results of the experiment are shown in

Summary of Results from

150

The following abbreviations are used to refer to the various parts of this experiment:

Stage 1 - Test 1
Stage 1 - Test 2
Stage 2 - Test 1
Stage 2 - Test 2

Normality tests were initially carried out to ascertain whether each sample was from a
normal distribution. The normality tests showed that the data from all four samples
were indeed normally distributed. Therefore, could be conducted
on the independent samples [SI and S2 Tl] and [SI T2 and S2 T2]. The results of
the normality tests are shown in and

Firstly, a was used to analyse the results of It was carried
out on the independent samples SI Tl and S2 The subjects of the test were post-
graduate students. The results of the with equal variances not assumed,
distinctly revealed that participants of the experiment in S2 Tl detected significantly
more seeded errors compared to subjects in SI Tl. The spreadsheet model used in S2
Tl had been created based on the proposed methodology. The results can be seen in

shows a plot of the data obtained from and S2
Tl. It can be clearly seen that on the whole, subjects in S2 Tl were able to detect
more errors compared to subjects in The raw data from and S2 Tl are
presented in

The P-Value of the F-test is 0.006. As this is less than 0.05, equal variances are not assumed.
The 1-tailed P-Value of the T-test is evidently far less than 0.01. Therefore, there is an extremely

significant increase in the number of errors detected by subjects in S2 Tl.

Two-Sample T-Test (in

151

g

"5
i_

V- co

Figure 9.9 (b): Plot of Data from SI Tl and S2 Tl

Secondly, a was also used in the analysis of the results of
It was performed on the independent samples SI T2 and S2 T2. The subjects of
were short course students. The results of the provided very strong evidence
that subjects of the experiment in S2 T2 detected significantly more seeded errors
compared to subjects in SI T2. The spreadsheet model used in S2 T2 had been
created based on the proposed methodology while SI T2 involved a model built using
a conventional approach. The results are shown in
shows a plot of the data obtained from SI T2 and S2 T2. It is clearly evident that on
the whole, subjects in S2 T2 detected more errors compared to subjects in SI T2. The
raw data from SI T2 and S2 T2 are presented in

152

Two-Sample T-Test (in

Plot of Data from SI T2 and S2 T2

153

9.2.4 Experiment 4

The nature and structure of are identical to those of The
main difference between the two experiments was that different spreadsheet models
were used. As performed in and 3, subjects had to detect seeded errors
in a model that had been produced either based on a conventional approach or the
proposed structured methodology. The results are displayed in

Summary of Results from

The following abbreviations are used to refer to the various parts of this experiment:

Stage 1 - Test 1
Stage 1 - Test 2
Stage 2 - Test 1
Stage 2 - Test 2

As done in the previous experiments, normality tests were carried out to check if the
data from each sample was normal distributed. The normality tests revealed that the
data from all four samples belonged to a normal distribution. Therefore,

were performed on the independent samples [SI Tl and S2 Tl] and [SI T2
and S2 T2]. The results of the normality tests are displayed in

and

A was used to analyse the results of It was performed on
the independent samples SI Tl and S2 Tl. The subjects were post-graduate students.
The results of the distinctly proved that subjects of the experiment in S2 Tl
were able to identify significantly more seeded errors compared to subjects in
This can be attributable to the fact that the spreadsheet model used in S2 Tl had been
created based on the proposed methodology. The results can be seen in

shows a plot of the data obtained from and S2 Tl. It is
obvious that on the whole, subjects in S2 Tl identified more errors compared to
subjects in The raw data from and S2 Tl are presented

154

The P-Value of the F-test is 0.234. As this is greater than 0.05, equal variances are assumed.
The 1-tailed P-Value of the T-test (0.0005) is far less than 0.01. Therefore, there is a highly

significant increase in the number of errors detected by subjects in S2 Tl.

Two-Sample T-Test (in

Figure 9.12 (b): Plot of Data from SI Tl and S2 Tl

A was subsequently conducted to analyse the results of It
was carried out on the independent samples SI T2 and S2 T2. The subjects of
were short course students. The results of the provided extremely strong
evidence that subjects of the experiment in S2 T2 performed far better by detecting
significantly more seeded errors compared to subjects in SI T2. The spreadsheet
model used in S2 T2 had been produced according to the proposed methodology
while SI T2 involved the model built based on a conventional approach. The results
are shown in shows a plot of the data obtained from

155

SI T2 and S2 T2. It is obvious that on the whole, subjects in S2 T2 detected more
errors compared to subjects in SI T2. The raw data from SI T2 and S2 T2 are
provided in

The P-Value of the F-test is 0.559. As this is far greater than 0.05, equal variances are assumed.
It is very obvious that the 1-tailed P-Value of the T-test is far less than 0.01. Therefore, there is a

highly significant increase in the number of errors detected by subjects in S2 T2.

Two-Sample T-Test (in

Figure 9.13 (b): Plot of Data from SI T2 and S2 T2

156

9.3 Summary

The purpose of was to determine whether employing the proposed
structured methodology could result in a significant reduction in the number of errors
committed when producing a spreadsheet model. This inevitably involves a
comparison with the development of the model using an unstructured or conventional
approach. The principal objective of 2, 3 and was to establish whether
spreadsheet models built based on the proposed structured methodology were more
comprehensible by evaluating users' capacity to detect seeded errors.

The results obtained from have distinctly and consistently demonstrated
that there is a drastic decrease in the number of user-generated errors committed by
subjects adopting the proposed structured methodology to develop a spreadsheet
model. On the contrary, subjects produced significantly more errors when their own
methods and techniques were employed. A combination of several appropriate
statistical tests and techniques, namely tests, the
test, a and tests, were used to analyse the results of

The conclusion that can be drawn from this experiment is that the
proposed methodology has the potential to reduce the occurrence of user-generated
errors in spreadsheet models.

The results of 2, and proved beyond any doubt that subjects were
able to detect considerably more seeded errors in spreadsheet models built based on
the proposed structured methodology, in comparison to models created using
conventional unstructured or less structured methods. An analysis of the data using
techniques such as tests, and
tests, revealed that all the results were statistically significant. They strongly
supported the hypothesis that the error detection rate in models built based on the
proposed methodology was considerably higher compared to those constructed using
conventional methods. This is clearly due to the fact that models conforming to the
proposed methodology facilitate better comprehension.

The results of the series of four experiments conducted provide adequate testimony to
the methodology's potential for enhancing the quality, controlling the integrity and
improving the comprehensibility of spreadsheet models.

157

CHAPTER 10
CONCLUSIONS AND FUTURE WORK

10.1 Conclusions

Important contributions have been made in this research programme. The primary
question posed in the research is whether a structured methodology can be developed
for the integrity control of spreadsheet models and if such a framework can reduce the
occurrence of user-generated errors. The most significant contribution of this research
programme is a structured methodology for the development and integrity control of
spreadsheet models. Through the various experiments conducted and a meticulous
analysis of their results, the proposed methodology's potential for integrity control has
been demonstrated. The proposed methodology can reduce the occurrence of user-
generated errors by ensuring consistency in the spreadsheet model development
process and producing more comprehensible, reliable and maintainable models.

It is of utmost importance to gain a thorough insight into the nature and properties of
spreadsheet errors in order to development an effective methodology for controlling
the integrity of spreadsheet models. A secondary research question concerns the
possibility of developing a classification of user-generated spreadsheet errors based
on a rational taxonomic scheme. The construction of the proposed methodology was
preceded and inspired by a more comprehensive classification of user-generated
errors, than presented before, based on systematic taxonomic methods. This is an
immensely important by-product of the research and clearly establishes the possibility
of developing a comprehensive classification or taxonomy of the different types of
user-generated spreadsheet errors based on a rational taxonomic scheme. The
provision of this taxonomy offers an extremely important means of comprehending,
analysing and comparing the different types of spreadsheet errors.

The next secondary research question asks what framework for spreadsheet model
development is most likely to be optimum in a practical situation. A thorough
investigation of past work on the phenomenon of spreadsheet errors has revealed an
urgent need to adopt a structured and software engineering based methodology as an
optimum framework for spreadsheet development in a practical situation. The
proposed methodology represents a new approach or paradigm to the provision of
such a discipline for the development of spreadsheet models. As explained in Chapter
6 (Section 6.3), at the present time, the structured techniques based on

appear to be the most approachable due to its simplicity in concept,
maturity and likely acceptance by spreadsheet users. More sophisticated approaches
such as and might become
feasible as the practice develops industrially.

Based on one of the secondary research questions, an investigation is conducted into
the possibility of applying software engineering principles to the process of
spreadsheet model building to help improve the quality of the models. Structured
techniques and software engineering principles form the foundation and backbone to
the proposed methodology. The rigorous application of structured methods and
established software engineering principles makes this a novel structured

158

methodology for the development and quality control of spreadsheet models. The
methodology consists of numerous software engineering based methods and
techniques that are effectively applied to the process of spreadsheet model building.
The experiments conducted clearly demonstrated that the principles and techniques
advocated within the methodology have the potential to improve the quality of
spreadsheet models.

In order to answer the secondary research question on how effective the proposed
framework is, the various features of the proposed structured methodology are tested
on a range of spreadsheet models through a series of experiments. The results of the
various experiments performed have distinctly and consistently demonstrated that the
proposed methodology has tremendous potential to drastically reduce the incidence of
errors and enhance the comprehensibility of spreadsheet models. This provides a very
strong testimony to the effectiveness of the proposed structured methodology.

In conclusion, the research programme has established that a structured methodology
for the integrity control of spreadsheet models can indeed be produced. The
framework, primarily based on software engineering principles, can be applied to the
development of spreadsheet models and decrease the occurrence of user-generated
errors. This represents a significant contribution of additional knowledge and novel
methods to the area of integrity control of spreadsheet models and structured
spreadsheet development.

159

10.2 Future Work

The aim of the research was to create a methodology for improving the quality of
spreadsheet models. However, this should not impose considerable extra burden on
model developers. To this end, it will be immensely beneficial to build an automatic
support tool to assist in the design, structuring and implementation of the spreadsheet
model. This will take the form of a CASE (Computer-Aided Software Engineering)
tool.

Future work on this project is envisaged on two important issues. The first is to
produce an automatic spreadsheet-engineering tool to assist in the production of new
spreadsheet models based on the proposed methodology. This tool should encompass
both the front-end and back-end phases of the spreadsheet building process. In the
front-end, it should offer facilities to produce the conceptual and logical designs in the
form of In the back-end stages, the tool should be able to
automatically map the logical design onto an implemented model schema. Apart from
that, it should also have mechanisms to perform the various update operations without
affecting the integrity of the model.

The second issue concerns the re-engineering of existing spreadsheet models built
based on conventional or unstructured methods. The tool should have a reverse-
engineering function to extract information on structure from existing spreadsheets,
and translate these models into structured form, based on the proposed methodology.

160

REFERENCES

[Aktas-87]
Aktas, A.Z. (1987) Englewood
Cliffs, NJ: Prentice-Hall.

[Ayalew-00]
Ayalew, Y., Clermont, M. and Mittermeir, R.T. (2000) "Detecting errors in
spreadsheets". In: Chadwick, D. (ed.) (2000)

London: University of
Greenwich, pp. 51-62.

[Batson-86]
Batson, J. (1986) "Spreadsheet good practice", 200 (Winter).

[Batson-91]
Batson, J. and Brown, A. (1991) "Spreadsheet modelling best practice",

2730 (Autumn).

[Bell-00]
Bell, D. (2000)
Harlow: Addison-Wesley.

[Benham-93]
Benham, H., Delaney, M. and Luzi, A. (1993) "Structured techniques for successful
end user spreadsheets", 5(2), pp. 18-25.

[Bodily-86]
Bodily, S.E. (1986) "Spreadsheet modeling as a stepping stone", 16(5), pp.
34-52.

[Booch-94]
Booch, G. (1994) Redwood
City, CA: Benjamin Cummings.

[Britannica.com-99-00]
Britannica.com (1999-2000) Britannica.com and
Encyclopaedia Britannica, Inc.

[Brown-87]
Brown, P.S. and Gould, J.D. (1987) "An experimental study of people creating
spreadsheets", 5(3), pp. 258-272.

[Burgess-87]
Burgess, R.S. (1987) London: Hutchinson.

161

[Business Week-84]
Business Week (1984) "How personal computers can trip up executives",

2861 (September), pp. 94-102.

[Butler-92]
Butler, R. (1992) United Kingdom: HM Customs & Excise.

[Butler-97]
Butler, R. (1997) "The subversive spreadsheet",

[Butler-00]
Butler, R. J. (2000) "Is this spreadsheet a tax evader? how H.M. Customs & Excise tax
test spreadsheet applications". In: Sprague, R.H., Jr. (ed.) (2000)

California: IEEE Computer Society.

[Butler-OOa]
Butler, R. (2000) "Risk assesssment for spreadsheet developments". In: Chadwick, D.
(ed.) (2000)

London: University of Greenwich, pp. 65-74.

[Cameron-83]
Cameron, J.R. (1983)
Silver Spring, MD: IEEE Computer Society.

[Cale-94]
Cale, E.G., Jr. (1994). "Quality issues for end-user developed software",

45(1), pp. 36-39.

[Carlsson-89]
Carlsson, S.V. (1989) "Why Johnny can't or won't spreadsheet",

1, pp. 118-142.

[Chadwick-97]
Chadwick, D., Knight, J. and Clipsham, P. (1997) "Information integrity in end-user
systems". In: Jajodia, S., List, W., McGregor, G. and Strous, L. (eds) (1997)

London: Chapman and Hall, pp. 273-292.

[Chadwick-97a]
Chadwick, D. (1997) "Auditing and the three A's", 7(4), p. 7.

[Chadwick-99]
Chadwick, D., Knight, B. and Edwards, D. (1999) "A methodology
for spreadsheet development based on data structure", 99/EM/50.

162

[Chadwick-99a]
Chadwick, D., Knight, B. and Edwards, D. (1999) "An approach to
the teaching of spreadsheets using software engineering concepts",

Great
Britain: British Computer Society, pp. 261-273.

[Chadwick-00]
Chadwick, D., Knight, B. and (2000) "Quality control in
spreadsheets: a visual approach using color codings to reduce errors in formulae",

Great Britain: British
Computer Society.

[Chadwick-OOa]
Chadwick, D., Knight, B. and (2000) "Quality control in
spreadsheets: a visual approach using color codings to reduce errors in formulae",

9(2), pp. 133-143.

[Chadwick-OOb]
Chadwick, D. (2000) "Stop the subversive spreadsheet", May, pp.
26-27.

[Chen-76]
Chen, P. (1976) "The entity relationship model - toward a unified view of data",

1(1), pp. 6-36.

[Coopers-97]
Coopers & Lybrand (1997)
London: Coopers & Lybrand.

[Cragg-92]
Cragg, P.B. and King, M. (1992)

Working Paper (September), Not formally published.

[Cragg-93]
Cragg, P.G. and King, M. (1993) "Spreadsheet modelling abuse: an opportunity for
OR?", 44(8), pp. 743-752.

[Creeth-85]
Creeth, R. (1985) "Microcomputer spreadsheets: their uses and abuses",

159, pp. 90-93.

[Dahl-72]
Dahl, O., Dijkstra, E. and Hoare, C. (1972) London:
Academic Press.

163

[Davies-87]
Davies, N. and Ikin, C. (1987) "Auditing spreadsheets",
December, pp. 54-56.

[Davis-96]
Davis, S.J. (1996) "Tools for spreadsheet auditing",

45, pp. 429-442.

[Dent-95]
Dent, A. (1995) Dent's personal communication with Prof. Panko, R. (University of
Hawaii) via electronic mail (2 April 1995).

[Dhebar-93]
Dhebar, A. (1993) "Managing the quality of quantitative analysis",

34, pp. 69-75.

piAntonio-86]
DiAntonio, A.E. (1986) Englewood Cliffs, NJ: Prentice-
Hall.

[Ditlea-87]
Ditlea, S. (1987) "Spreadsheets can be hazardous to your health",

11, pp. 60-69.

[Floyd-87]
Floyd, B.D. and Pyun, J. (1987) Working Paper 167
(October), New York: Center for Research on Information Systems, Information
Systems Department, New York University.

[Floyd-95]
Floyd, B.D., Walls, J. and Marr, K. (1995) "Managing spreadsheet model
development", 46(1), pp. 38-43.

[Freeman-86]
Freeman, R.M. (1986) "A slip of the chip on computer spreadsheets can cause
millions", July, p. 8.

[Freeman-96]
Freeman, D. (1996) "How to make spreadsheets error-proof,

May, pp. 75-77.

[Galletta-92]
Galletta, D.F. and Hufnagel, E.M. (1992) "A model of end-user computing policy:
context, process, content and compliance", 22(1), pp.
1-28.

164

[Galletta-93]
Galletta, D.F., Abraham, D., El Louadi, M, Lekse, W., Pollailis, Y.A. and Sampler,
J.L. (1993) "An empirical study of spreadsheet error performance",

5(3-4), pp. 79-95.

[Galletta-97]
Galletta, D.F., Hartzel, K.S., Johnson, S. and Joseph, J.L. (1997) "Spreadsheet
presentation and error detection: an experimental study",

13(2), pp. 45-63.

[Hall-96]
Hall, M.J.J. (1996) "A risk and control oriented study of the practices of spreadsheet
application developers",

California: IEEE
Computer Society, pp. 364-373.

[Hassinen-88]
Hassinen, K. (1988)

Finland: Department of Computer Science, University of Joensuu.

[Hayen-89]
Hayen, R.L. and Peters, R.M. (1989) "How to ensure spreadsheet integrity",

60(9), pp. 30-33.

[Hendry-94]
Hendry, D.G. and Green, T.R.G. (1994) "Creating, comprehending and explaining
spreadsheets: a cognitive interpretation of what discretionary users think of the
spreadsheet model", 40(6), pp.
1033-1065.

[Hicks-95]
Hicks, L. (1995) Hicks' personal
communication with Prof. Panko, R. (University of Hawaii) via electronic mail (21
June 1995).

[Howitt-85]
Howitt, D. (1985) "Avoiding bottom-line disaster - increased use of electronic
worksheets heightens risk of serious errors", 7(6), pp. 26-30.

[IEEE-83]
IEEE (1983) IEEE Std

729.

[Igarashi-98]
Igarashi, T., Mackinlay, J.D., Chang, B.W. and Zellweger, P.T. (1998) "Fluid
visualization of spreadsheet structures", pp.
118-125.

165

[Ingevaldsson-86]
Ingevaldsson, L. (1986). Sweden: Leif
Ingevaldsson and Studentlitteratur.

[Ingevaldsson-90]
Ingevaldsson, L. (1990) -
Sweden: Leif Ingevaldsson and Studentlitteratur.

[Isakowitz-95]
Isakowitz, T., Schocken, S. and Lucas, H.C.J. (1995) "Toward a logical/physical
theory of spreadsheet modeling", 13(1),
pp. 1-37.

[Jackson-75]
Jackson, M.A. (1975) New York: Academic Press.

[Janvrin-96]
Janvrin, D. and Morrison, J. (1996) "Factors influencing risks and outcomes in end-
user development",

California: IEEE
Computer Society.

[Janvrin-00]
Janvrin, D. and Morrison, J. (2000) "Using a structured design approach to reduce
risks in end user spreadsheet development", 37(1), pp. 1-
12.

[Jones-90]
Jones, G.W. (1990) Singapore: John Wiley & Sons.

[Kantaris-94]
Kantaris, N. and Oliver, P.R.M. (1994) London: Bernard Babani
(publishing).

[Kavanagh-97]
Kavanagh, J. (1997) "Shoddy business models breed financial disaster",

19 June 1997.

[Kee-88]
Kee, R. (1988) "Programming standards for spreadsheet software",
62(3), pp. 55-60.

[Knight-00]
Knight, B., Chadwick, D. and (2000) "A structured methodology
for spreadsheet modelling". In: Chadwick, D. (ed.) (2000)

London: University
of Greenwich, pp. 43-50.

[KPMG-97]
KPMG (1997) London: KPMG
Management Consulting.

[KPMG-98]
KPMG (1998) London: KPMG Management
Consulting.

[KPMG-98a]
KPMG (1998).
London: KPMG Management Consulting.

[KPMG-98b]
KPMG (1998)

Press release (30 July 1998). London: KPMG Management Consulting.

[Lerch-88]
Lerch, F.J. (1988)

Unpublished doctoral dissertation. Michigan: University of
Michigan.

[Mason-89]
Mason, D. and Keane, D. (1989) "Spreadsheets: solution or problem",

October, pp. 82-84.

[McMickle-89]
McMickle, P. (1989) "Troubleshooting spreadsheets", 3(2),
pp. 60-71.

[Nardi-90]
Nardi, B.A. and Miller, J. (1990)

Technical report HPL-90-08 (March). California: HP Software
Technology Laboratory.

[Nardi-91]
Nardi, B.A. and Miller, J. (1991) "Twinkling lights and nested loops: distributed
problem solving and spreadsheet development",

34(2), pp. 161-184.

[Nixon-01]
Nixon, D. and O'Hara, M. (2001) "Spreadsheet auditing". In: Chadwick, D. and
Strous, L. (eds) (2001)

The Netherlands: EuSpRIG, pp. 79-93.

[Olsen-87-88]
Olsen, J.R. and Nilsen, E. (1987-1988) "Analysis of the cognition involved in
spreadsheet interaction", 3(4), pp. 309-349.

167

[Orr-81]
Orr, K.T. (1981) Topeka, KS: Ken Orr and
Associates.

[Panko-94]
Panko, R.R. and Halverson, R.P., Jr. (1994) "Individual and group spreadsheet design:
patterns of errors",

California: IEEE
Computer Society.

[Panko-96]
Panko, R.R. and Halverson, R.P., Jr. (1996) "Spreadsheets on trial: a survey of
research on spreadsheet risks",

California: IEEE
Computer Society.

[Panko-96a]
Panko, R.R. and Halverson, R.P., Jr. (1996) "Understanding spreadsheet risks",

14(2), pp. 1-11.

[Panko-97]
Panko, R.R. and Halverson R.P., Jr. (1997) "Are two heads better than one? (at
reducing errors in spreadsheet modeling)", 15(1),
pp. 21-23.

[Panko-98]
Panko, R.R. (1998) "What we know about spreadsheet errors",

10(2), pp. 15-21.

[Panko-99]
Panko, R.R. & Sprague, R.H., Jr. (1999) "Hitting the wall: errors in developing and
code-inspecting a 'simple' spreadsheet model", 22, pp.
337-353.

[Panko-99a]
Panko, R.R. (1999) "Applying code inspection to spreadsheet testing",

16(2), pp. 159-176.

[Parnas-72]
Parnas, D.L. (1972) "On the criteria to be used in decomposing systems into
modules", 14(1), pp. 221-227.

[Pearson-J
Pearson, R. (1988) "Lies, damned lies, and spreadsheets", 13, pp. 299-304.

168

[Rajalingham-98]
and Chadwick, D. (1998) "Integrity control of spreadsheets:

organisation & tools". In: Jajodia, S., List, W., McGregor, G.W. and Strous, L. (eds)
(1998) Massachusetts: Kluwer
Academic Publishers, pp. 147-168.

[Rajalingham-99]
Chadwick, D., Knight, B. and Edwards, D. (1999) "An approach to

improving the quality of spreadsheet models". In: Hawkins, C., King, G., Ross, M.
and Staples, G. (eds) (1999)
Great Britain: British Computer Society, pp. 117-131.

[Raj alingham-99a]
Chadwick, D., Knight, B. and Edwards, D. (1999) "Efficient

methods for checking integrity: an integrated spreadsheet engineering methodology
(ISEM)". In: van Biene-Hershey, M.E. and Strous, L. (eds) (1999)

Massachusetts: Kluwer Academic Publishers, pp. 41-58.

[Rajalingham-00]
Chadwick, D., Knight, B. and Edwards, D. (2000) "Quality control

in spreadsheets: a software engineering-based approach to spreadsheet development".
In: Sprague, R.H., Jr. (ed.) (2000)

-
California: DEEE Computer Society.

[Raj alingham-OOa]
Chadwick, D. and Knight, B. (2000) "Classification of spreadsheet

errors". In: Chadwick, D. (ed.) (2000)
London: University of Greenwich,

pp. 23-34.

[Rajalingham-OOb]
Chadwick, D. and Knight, B. (2000) "Classification of spreadsheet

errors",
10(4), pp. 5-10.

[Rajalingham-01]
Chadwick, D. and Knight, B. (2001) "An evaluation of the quality

of a structured spreadsheet development methodology". In: Chadwick, D. and Strous,
L. (eds) (2001) -

The Netherlands: EuSpRIG, pp. 39-59.

[Rajalingham-02]
Chadwick, D. and Knight, B. (2002) "Efficient methods for

checking integrity: a structured spreadsheet engineering methodology",
26(1).

169

[Read-99]
Read, N. and Batson, J. (1999) London:
Business Dynamics, PricewaterhouseCoopers.

[Roberts-88]
Roberts, R.S. (1988) "Problems with user programmed applications, errors in
spreadsheets",

[Ronen-89]
Ronen, B., Palley, M.A. and Lucas, H.C., Jr. (1989) "Spreadsheet analysis and
design", 32, pp. 84-93.

[Rumbaugh-91]
Rumbaugh, J., Blaha, M., Premerlani, W., Eddy, F. and Lorensen, W. (1991)

Englewood Cliffs, NJ: Prentice-Hall.

[Saariluoma-91]
Saariluoma, P. and Sajaniemi, J. (1991) "Extracting implicit tree structures in
spreadsheet calculation", 34(8), pp. 1027-1046.

[Saariluoma-94]
Saariluoma, P. and Sajaniemi, J. (1994) "Transforming verbal descriptions into
mathematical formulas in spreadsheet calculation",

41(6), pp. 915-948.

[Savitz-94)
Savitz, E.J. (1994) "Magellan loses its compass", 84(50).

[Simkin-87]
Simkin, M.G. (1987) "How to validate spreadsheets",
November, pp. 130-138.

[Slater-90]
Slater, R. and Ascroft, P. (1990)
London: Chapman and Hall.

[Sommerville-01]
Sommerville, I. (2001) Harlow: Addison-
Wesley.

[Speier-96]
Speier, C. and Brown, C.V. (1996) "Perceived risks and management actions:
differences in end-user application development across functional groups",

California: EEEE Computer Society.

170

[Sprague-82]
Sprague, D.H., Jr. and Carlson, E.D. (1982)

Englewood Cliffs, NJ: Prentice-Hall.

[Stang-87]
Stang, D. (1987) "Spreadsheet disasters I have known", 3(11),
pp. 26-30.

[Stevens-74]
Stevens, W., Myers, G. and Constantine, L. (1974) "Structured design",

13(2), pp. 115-139.

[Steward-87]
Steward, D.V. (1987)
California: Brooks/Cole Publishing Company.

[Teo-97]
Teo, T.S.H. and Tan, M. (1997) "Quantitative and qualitative errors in spreadsheet
development",

California: IEEE Computer Society, pp. 149-
155.

[van Vliet-96]
Van Vliet, H. (1996) Chichester:
John Wiley & Sons.

[Ward-97]
Ward, M. (1997) "Fatal addition", 16 August 1997.

[Warnier-81]
Warmer, J.D. (1981) New York: Van Nostrand
Reinhold.

[Weaver-98]
Weaver, P.L., Lambrou, N. and Walkley, M. (1998)

London: Financial Times Pitman Publishing.

[Weaver-02]
Weaver, P.L., Lambrou, N. and Walkley, M. (2002)

Harlow:
Financial Times Prentice Hall.

[Whirtaker-99]
Whittaker, D. (1999) "Spreadsheet errors and techniques for finding them",

77(9), pp. 50-51.

[Wood-96]
Wood, F. (1996) London: Pitman Publishing.

171

[Woodbury-89]
Woodbury, G.G. (1989) "Re: 'Computer Error' in Durham N.C. election results",

9(42).

172

APPENDIX A
FREQUENCY OF SPREADSHEET ERRORS

The information in this table is presented by Panko and Halverson (Panko-96,98,00).

continued .

173

continued

174

175

APPENDIX B
SURVEYS ABOUT CORPORATE CONTROL POLICIES

The information in this table is presented by Panko and Halverson (Panko-96).

continued

177

APPENDIX C
EXAMPLES OF THE APPLICATION OF
THE PROPOSED METHODOLOGY

Example 1:

Based on the example of a the model developer
would first examine the desired output(s). A typical desired output is shown in

Each column and row is labelled with either an alphabet (column) or a number
(row). A cell address is made up of a column label and a row number. Based on

occupies cell Bll while the value corresponding to
is in cell

Desired Output

Based on among the required output values, those that take the form of a
formula are identified. They are

and

The underlying logic and structure of each formula is determined at the logical level:

 Net profit = Gross profit - Total expenses
 Total appropriations = Z

Unappropriated profits carried to next year = Net profit +
Unappropriated profits from last year - Total appropriations

 Gross profit = Sales - Cost of goods sold + Closing stock
 Total expenses = Z

178

Based on the desired outputs of the shown in
C7, the model developer would firstly determine the operands of each output

formula. This step was performed in the previous stage and therefore does not have to
be repeated. The precedent-dependant relationships between the output formulae are
then established. As described in 5.2), if B is a precedent of A, this
is represented by an arrow pointing from B to A, i.e. B -> A, or A <- B. The
dependencies between the formulae are shown in

to next year

Total
expenses

Dependencies Between Formulae

From C2, the only root formula is easily identifiable, i.e.
This is because it has no dependants.

The Jackson structure representation of the direct and indirect precedents of the root
formula is shown in This diagram also represents the conceptual design of
the spreadsheet model.

179

I

1

Conceptual Design of the

This model distinctly shows the precedents of the various functions. The leaves
and are represented as iterations in This is

because each of them refers to a group of related inputs, defined as a range. The
elements of a range are always operated on or manipulated as a set rather than
individually. These iterations also indicate that the contents of the defined set (or
input range) can change frequently as a result of data entry operations. It is also
assumed that is an input.

Observing the conceptual design of the model, shown in it is found that
there are no nodes or formulae with multiple dependants. As a result, there are no
graph sub-structures within the model that need to be resolved. Therefore, in this
particular example, the logical design of the model schema is said to be identical to
the conceptual design.

Applying the steps and techniques associated with this stage, the logical design of the
model shown in can be mapped onto a

physical spreadsheet structure as shown in is used to show the
different levels within the model. An asterisk (*) is placed next to a row label (in
column A) to denote that the formula operates on an

180

Outline ot

The input component for the can now be created
and all inputs entered in order to provide the model schema with the values required.
This is done on a separate worksheet. The worksheet should be labelled Based
on the logical design for the spreadsheet model, the end-leaves can be implemented
within an component. This is shown in

Input Component

181

The elements of a group of inputs, which are always operated on or manipulated as a
set, are indented and a common name assigned to it. In order to define such a set of
related inputs, the input values corresponding to the set elements are defined as a
range, which is given a distinct name in the model.

The input data corresponding to the input sets (D12 to D19) and
(D21 to D23) are defined as ranges, and assigned the range names

and respectively.

The formulae and binding relationships of the model can now be physically
implemented or programmed in the model schema. The structure of the model
schema has already been produced and the appropriate formulae will be entered into
the right cells.

References to inputs are first entered into the relevant cells in the model schema. This
includes functions of input ranges, such as and

A bottom-up approach is taken in the implementation of formulae and relationships in
the model schema. and show the final state of the model
schema of the Model. In the structure of
the underlying functions are shown as entered by the model developer.
on the other hand, shows the surface values of the formulae based on the current state
of inputs shown in

Model Schema

182

14

17

Model Schema

Each data value and formula in the input component and model schema should be
assigned a unique name. These names should then be used as operands within
formulae, instead of cell addresses. The exception to this rule applies to a data value
which is part of a related set of data that is always treated and operated on as a set, in
which case it will be defined as a range along with the other related inputs. If this
technique is applied, the formula view of the model schema will appear as displayed
in

C7: Model Schema

The final state of the output component is shown in and
displays the surface values of formulae (references) in the output

component, while and show the underlying structure of the
formulae (references) as they are entered. In the formulae or references
are more comprehensible as they are in natural language. This can be done if every
formula in the and every piece of data in the is
assigned a unique name.

183

C8 Output Component

Output Component

184

Output Component

Refer to

185

Example 2:

The desired output of the model is shown in Its representation in
spreadsheet form is shown in

Post-tax

675 but under
750 but under

1000 but under
1250 but under
1500 but under

income

750
1000
1250
1500
1750

distribution for

357
1350
1780
1840
1850

1975 and 1985

% %

255
1190
2000
2530
3000

1750 but under
2000 but under
2500 but under
3000 but under
3500 but under

2000
2500
3000
3500
4000

635
1470
1410
1670
1670

1190
3290
3850
5420
6250

Output Structure

Output Structure on Spreadsheet

186

Based on and the required formulae that can be identified are
and for each range

of each year.

The logical mathematical equations for the formulae are as follows:
 {Number %} = Range number as a percentage of Total number for the year
 {Number cumulative %} = Number cumulative % of previous range +

number %
 {Income %} = Total range income as a percentage of Total year income
 {Income cumulative %} = Income cumulative % of previous range +

Income %

A formula within curly brackets represents multiple iterations/instances.

The desired output of the model is shown in Its representation in
spreadsheet form is shown in

Based on the desired outputs of the ', the operands
of each output formula have already been determined. The precedent-dependant
relationships between the output formulae are now established. This is shown in

Precedent-Dependant Relationships Between the Output Formulae

From it can be observed that there are two sets of root formulae, namely,
an and an
The next step is to use a Jackson structure to represent the direct and indirect
precedents of each set of root formulae.

As each root formula is an iterated component, the iteration group(s) of each root
formula has to be identified. According to the logic of the model, the

and are to be calculated for each range of each
year. This is shown in

187

Income
Cumulative

Relationship Between

Each iterated component is associated with an index that is used to indicate which
iteration each of its precedents belongs to. The diagram in constructed
using Jackson notation, represents the conceptual design of the spreadsheet model.
The Jackson structures of both sets of root formulae have been merged into a single
structure representing the entire spreadsheet model.

Based on by adopting a top-down approach without duplicating model
elements, a graph-like structure, as opposed to a tree structure, is produced. The
model distinctly shows the direct and indirect precedents of each formula
(represented by a that is not an

188

Conceptual Design of the

In the conceptual design took the form of a tree. Not all spreadsheet
conceptual models are of this simple form, but have underlying structures in the form
of a more general graph.

shows the conceptual design of the
There are two nodes with multiple dependants, namely, and

Applying and 2, the conceptual design is transformed into a logical
design of a pure tree structure by resolving the irregularities. The logical design of the
model schema is presented in

Looking at the duplicated nodes and are
defined as separate modules.

189

Logical Design of the Model Schema

The structure or layout of the can now be created by mapping the
logical model onto the physical spreadsheet according to the rules and steps of this
stage. The first column contains module headings and names of iterated components.
These are appropriately indented based on the logical design. The second column
contains the names of formulae and data used in the spreadsheet model schema, also
systematically indented. The resulting structure of the model schema is illustrated in

and

190

The Entire Structure of the Model Schema

191

A Segment of the Model Schema

A Segment of the Model Schema

192

Based on the steps and guidelines discussed under this stage of the proposed
methodology, the input component of the model is built
and all model inputs are entered. The input component or section can be structured
either as seen in or

Input Component

193

^ f \J

Input Component

The formulae and binding relationships of the of the
model are implemented. and show the final state

of the model schema of the model. In
the structure of the underlying formulae is shown, while on the other
hand, shows the surface values of the formulae based on a segment of the model.
References to modules within this model segment are displayed in

194

Model Schema

195

Model Schema

References to Modules

196

The output component of the model is completed by
entering references to formulae in the model schema and data in the input component,
in the appropriate cells. displays the level of the output
component while and show segments of its level or

As highly recommended by the proposed methodology, the
ideally, should be in natural language.

Output Component

References to the

C17 Output Component

197

References to the

C17 Output Component

Refer to 7.3:

198

