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Abstract:

The long-run growth model of Galor and Weil (AER 2000) is examined

quantitatively. We first give parametric forms to some functions which were

only given on general form in the original article. We then choose numerical

parameter values in line with calibrations of related long-run growth models,

and with data. Finally, we simulate the model. We find, inter alia, that the

time paths for population, and other variables, display oscillatory behavior:

they move in endogenous cycles. As the economy transits from Malthusian

stagnation to modern growth these oscillations die out. This is consistent

with population growth rates fluctuating considerably in historical data, but

having stabilized in modern economies. We also show that these cycles are

not an artifact of the two-period life setting: allowing adults to live on after

the second period of life with some probability does not make the oscillations

go away. Rather, the cycles are driven by fertility being proportional to per-

capita income minus the parental subsistence requirement. When population

is large, and per-capita incomes close to subsistence, fertility is therefore

sensitive to changes in population levels.
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1 Introduction

A number of recent papers have modelled growth in the “very long run.”

Perhaps most cited is Galor and Weil (2000) [henceforth GW], who repli-

cate a three-stage process of economic development.1 An economy starting

off in a state of Malthusian stagnation, endogenously enters first a phase of

post-Malthusian growth (where population growth and technological progress

increase simultaneously), and later a stage of modern growth (where popu-

lation growth declines and technological progress spurts and stabilizes at a

sustained positive rate). This is consistent with the broad facts about de-

velopment in Western Europe over the last couple of millennia (cf Figure

1).

Even though their model is essentially about explaining time paths, GW’s

analysis is theoretical and qualitative; no attempt is made to simulate the

model. A large number of models explaining similar facts have recently been

examined quantitatively, but none that contains the many ingredients of the

original GW model. Here we specify parametric forms for some previously

implicit functions in the GW model, put reasonable numbers on the param-

eters and choose initial conditions, and then simulate the model. Overall we

find that the GW model performs well quantitatively, in the sense that it can

replicate the patterns in Figure 1.

We believe the value-added of this exercise is threefold. First, taking the

GW model seriously from a quantitative perspective may bring new insights,

1See also Galor and Weil (1999) for an informal discussion and motivation of some of

the themes in the GW model, and Galor (2005, Section 4) who presents the GW model

with slightly different layout and notation.
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and inspire new ways to think about long-run growth, both in terms of mod-

elling and when simulating and calibrating models with related structures

(e.g. Galor and Moav 2002). That may in turn help asses the empirical rele-

vance of an expanding and celebrated, but so far predominantly theoretical,

growth literature.

Second, since the GW model is so complex and multi-dimensional there is

a pedagogical value of simulating it. GW use two-dimensional phase diagrams

to illustrate what happens over time to four state variables simultaneously.

In our simulations we can compare the time paths of each variable and see

how it is driven by the model’s assumptions, and how it relates to the paths

of the other variables.

Third, our calibration exercise generates a result that GW themselves did

not note, or emphasize: endogenous cyclical (oscillatory) behavior of popu-

lation growth in the Malthusian regime, and the dying off of these cycles as

the economy transits into sustained technological progress. The mechanics

driving these cycles is Malthusian. The key feature is that fertility is propor-

tional to per-capita income above the subsistence requirement of the parent.

When population in the current period is large, land per agent is low, and

per-capita income close to subsistence. Thus fertility is close to zero and

population in the next period pushed almost to extinction. This makes next

period’s per-capita incomes high, spurring a phase of population growth until

over-population sets in and the cycle starts all over again.

The model needs not generate oscillations. We show analytically (and

illustrate in simulations) that if, for example, the fixed time cost of children is

sufficiently (maybe unrealistically) high virtually all other results remain but
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the paths become non-oscillatory. At the same time, some extensions which

we may intuitively think would rule out oscillations do in fact not: allowing

adults to live for more than one period — a “perpetual youth” setting à la

Yaari (1965) — cannot make the oscillations go away. In short, lower adult

mortality only raises steady state population levels, and thus pushes per-

capita incomes lower and closer to subsistence, amplifying the oscillatory

features of the steady state.2

Whether or not these cycles are interesting is perhaps a matter of taste;

we believe that our quantitative exercise should have a lot of value added also

without them. But rather than trying to eliminate the oscillatory features

of the GW model (or criticize them) we argue that they are interesting in

their own right. There are two reasons for this. First, cyclical behavior in

population growth is often encountered in historical data. Figure 2 shows

the annualized population growth rate for Europe from 100 B.C. to modern

times. As seen, this has fluctuated a great deal; note e.g. the Black Death in

the 14th century. Such large movements in population growth do not seem to

be present in the rich world today. We do not suggest that the Black Death

should be interpreted literally as an endogenous cycle, but epidemics (and

probably wars and famines too) tend to be more lethal in over-populated

environments. Examining models with Malthusian backlashes may thus say

something important about long-run population dynamics. Making the same

2One qualitative change to the model that could make the oscillations go away is

allowing for property rights to land. Parents may then take into account the welfare

effects on each child from diluting the family landholdings, and reduce fertility before

over-population sets in. However, as we discuss in Section 4, this result is probably not

robust to alternative ways of modelling property rights.
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point another way: a model with endogenous cycles has an endogenous prop-

agation mechanism for shocks were we to introduce them.

A second reason these oscillations are interesting is that they are driven

by much the same mechanisms as some environmental degradation models,

in particular the Easter Island disaster story of Brander and Taylor (1998).

Our study may thus help shed light on how, if, and why, we have left a state

where such environmental/Malthusian backlashes occur.

This paper proceeds as follows. The rest of this section gives some ex-

amples of earlier related work. Next, Section 2 briefly sums up the central

equations and components of the Galor-Weil model. Subsection 2.1 then

provides the functional forms we use, and Subsection 2.2 sets up the whole

dynamical system. The baseline quantitative exercise follows in Subsection

2.3. Section 3 provides some sensitivity analysis; we find that allowing for a

higher time cost of children will make the oscillations vanish, but a perpetual

youth setting will not. Section 4 concludes.

1.1 Earlier work

Other attempts to explain long-run growth patterns quantitatively include

Hansen and Prescott (2002). Some of their results are driven by a postulated,

but not derived, hump-shaped pattern over time of population growth, as we

see in the data (cf Figure 1). GW generate such a hump-shape endogenously,

through agents’ fertility choices. The Hansen-Prescott study is useful for

comparing our results, and also provides useful guidance when we choose

parameter values.3

3For other applications of the Hansen-Prescott model, see e.g. Ngai (2004).
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Some long-run growth models with endogenous demographics share many,

but never all, of the ingredients in the GW model. See e.g. Boldrin and Jones

(2002), Doepke (2004), Fernandez-Villaverde (2001), Jones (2001), Kögel

and Prskawetz (2001), Lagerlöf (2003c), and Tamura (1996, 2002, 2004). For

example, these all lack any direct erosion effect on human capital coming from

technological progress, and the associated link from technological progress to

educational choices.

A long-run growth model replicating a pattern of declining volatility in

population growth is set up by Lagerlöf (2003a,b). There, however, popula-

tion growth fluctuates not due to endogenous cycles, but exogenous mortality

shocks (epidemics). An exogenous mortality function is postulated to make

the model generate a pattern of declining mortality volatility. In our simu-

lations of the GW model, by contrast, the declining volatility is a reflection

of the changing stability features of the system itself as technology starts to

grow, and the economy leaves the Malthusian trap.

Our study also adds to a large literature on endogenous and deterministic

fluctuations in population growth and incomes, both in models and data; see

e.g. Azariadis et al. (2004), Easterlin (1987), Greenwood et al. (2005,

Appendix B), and Samuelson (1976). However, these papers do not focus

directly on Malthusian cycles, as discussed here, or the dampening of such

cycles with the transition to modern growth.

As mentioned already, Brander and Taylor (1998) model Malthusian cy-

cles in population and natural resources in ways similar to GW, but without

any transition from stagnation to modern growth. Our exercise may thus

also add to a new and interesting environmental literature.
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2 The Galor-Weil Model

We first give a very brief summary of the original GW model, before showing

what we add to it terms of parametric forms and quantitative analysis. We

refer to the original paper for details.

This is an overlapping-generations model, where agents live for two pe-

riods: as children and adults. In adulthood agents earn income, consume,

decide how many children to rear, and invest in their children’s education.

Children are passive; they earn no income and consume nothing, but they

receive an education by their parents.

The income per unit of time of an agent who is adult in period t is denoted

zt, and given by

zt = h
α
t x

1−α
t = hαt

µ
AtX

Lt

¶1−α
, (1)

where Lt is the total adult population, X is total land (which is exogenous

and constant), and At is the level of technology (which is land augmenting).

The product AtX is referred to as (total) effective resources, and xt = AtX/Lt

is thus effective resources per worker. ht is human capital of a period-t adult,

and α is the labor share in goods production.

Technology progresses from period t to t+ 1 at rate

gt+1 =
At+1 − At

At
. (2)

Human capital is produced using

ht+1 = h(et+1, gt+1), (3)

where et+1 denotes education invested in children in period t (who become
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adults in period t+1). Note that technological change affects human capital

accumulation.

The following conditions are imposed on h(·):

he(e, g) > 0 hee(e, g) < 0

hg(e, g) < 0 hgg(e, g) > 0
. (4)

The interpretation goes as follows. Education raises human capital, but

with a declining marginal effect. Technological progress reduces human cap-

ital (making knowledge obsolete); this “erosion effect” is also declining on

the margin.

GW also assume that

heg(e, g) > 0, (5)

which implies that technological progress raises the return to investing in

education; or, equivalently, that the erosion effect of technological change

declines with eduction.

The utility function is given by

ut = (1− γ) ln ct + γ ln(ntht+1), (6)

where γ ∈ (0, 1), ct is consumption, and nt the number of (surviving) chil-
dren.4 The budget constraint for consumption is given by

ct = zt [1− (τ + et+1)nt] . (7)

4GW do not explicitly model child mortality. However, unless children carry their fixed

time and education costs before dying (quiet unlikely considering that the higher mortality

rates historically were among infants), nothing would change if we allowed for mortality,

except nt would then be fertility net of (infant) mortality.
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Each unit of education costs one unit of time; τ is a fixed time cost so each

child costs (τ + et+1) units of time to rear.
5

Utility in (6) is maximized subject to four constraints: the budget con-

straint in (7); the human capital production function in (3); a subsistence

consumption constraint: ct ≥ ec; and a non-negativity constraint on educa-
tion: et+1 ≥ 0.
The first-order conditions will look differently, depending on whether ct ≥ec and et+1 ≥ 0 are binding. The first-order condition for nt implies

nt[τ + et+1] =


γ if zt ≥ ez

1− ec
zt

if zt ∈ (ec, ez)
0 if zt ≤ ec

, (8)

where ez = ec/(1 − γ). As long as zt ∈ (ec, ez), the subsistence consumption
constraint, ct ≥ ec, is binding, and total time spent with children is rising
in zt. When zt exceeds ez time spent with children is constant at γ. When
zt ≤ ec fertility is zero, and the population dies out.
The first-order condition for et+1 gives

G(et+1, gt+1)

 = 0 if et+1 > 0

> 0 if et+1 = 0
, (9)

where

G(et+1, gt+1) = (τ + et+1) he(et+1, gt+1)− h(et+1, gt+1). (10)

5The original GW article uses an equivalent, but slightly more cumbersome, formula-

tion, where τe denotes the time cost per unit of education, and τ q a fixed time cost per

child, so that total time cost per child becomes τ q + τeet+1. Here we follow e.g. Galor

(2005) and normalize τe to unity.
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This defines education invested in children (et+1) as an implicit function

of technological progress (gt+1). The assumptions made about h(et+1, gt+1)

above imply that (as long as et+1 > 0) et+1 is increasing in gt+1:
6

e0(gt+1) = −Gg(et+1, gt+1)
Ge(et+1, gt+1)

> 0. (11)

Next GW assume that

G(0, 0) = τhe(0, 0)− h(0, 0) < 0, (12)

which implies that there exists some bg, such that et+1 is constrained to zero
if gt+1 < bg. We can thus write:

e(gt+1)

 > 0 if gt+1 > bg
= 0 if gt+1 ≤ bg . (13)

Technological progress from t to t+1 is assumed to depend on the education

of period-t adults, and period-t adult population size (a scale effect, of sorts):

gt+1 = g(et, Lt), (14)

where ∂g(et, Lt)/∂et > 0. It is assumed that the scale effect has an upper

bound, i.e., limL→∞ g(e;L) is finite. It is also assumed that

g(0, Lt) > 0, (15)

6To see this, note that hee(·) < 0 implies that

Ge(et+1, gt+1) = (τ + et+1)hee(et+1, gt+1) < 0.

Similarly, hg(·) < 0, and heg(·) > 0, imply that

Gg(et+1, gt+1) = (τ + et+1)heg(et+1, gt+1)− hg(et+1, gt+1) > 0.

11



i.e., there is some (possibly very slow) technological progress also in absence

of education.

2.1 Parametric forms

So far, we have presented the same setting as GW, where some functions

are defined only implicitly. To be able to simulate the model we must find

parametric functional forms for h(et+1, gt+1) and g(et, Lt). This is hard to

come up with, but the following works, and seems intuitive:

ht+1 = h(et+1, gt+1) =
et+1 + ρτ

et+1 + ρτ + gt+1
, (16)

where ρ ∈ (0, 1) is exogenous and can be interpreted as a part of the fixed
time cost, τ , that helps build human capital, so that et+1+ρτ can be thought

of as effective education. That is, nursing and looking after small children

help build their human capital, but not as effectively as education, since

ρ < 1. (This formulation is borrowed from Lagerlöf 2003a.)

Applying the expression defining optimal education in (10) to the para-

metric form in (16), we can derive optimal et+1 as

e(gt+1) = max
n
0,
p
gt+1τ(1− ρ)− ρτ

o
. (17)

It is easy to check that (16) satisfies the assumptions in (4). The as-

sumption in (5) typically does not hold, but this is only a sufficient, not

necessary, assumption to generate the result that et+1 is increasing in gt+1

[which holds anyhow; see (17)].7 It can also be seen that (12) holds, and that

7More precisely, using (16) it can be seen that

heg(et+1, gt+1) =
et+1 + ρτ − gt+1
(et+1 + ρτ + gt+1)

3 .
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bg = ρ2τ/(1− ρ).

Next, let technological progress take the form:

gt+1 = g(et, Lt) = (et + ρτ )a(Lt), (18)

where a0(Lt) > 0 (see below). In a fashion similar to (16) technological

progress depends on effective education in period t, i.e. et + ρτ . Note also

that gt+1 > 0 when et = 0. Choosing the functional forms as in (16) and (18)

greatly simplifies the algebra later on.

The scale effect, a(Lt), could take many functional forms. We choose:

a(Lt) = min {θLt, a∗} (19)

where θ, a∗ > 0. Thus, population affects technological progress linearly for

Lt ≤ a∗/θ, and then stays flat.8

2.1.1 Education dynamics for fixed population

Using (18) and (17), we can write et+1 as a function of et, and Lt:

et+1 = max
n
0,
p
(et + ρτ )a(Lt)τ(1− ρ)− ρτ

o
≡ φ(et, Lt). (20)

Holding population, Lt, constant this constitutes a one-dimensional difference

equation in et, the configuration of which depends on population size. In-

creasing Lt — and thus a(Lt) — the difference equation at some point switches

Inserting optimal et+1 from (17) this is seen to be positive only when gt+1 < τ(1 − ρ),

which does not hold in the modern growth regime in our baseline case.
8Since the economic content of the model will drive the interesting non-linearities of

the derived dynamical system, we want to ensure that we are not sneaking any extra non-

linearities in through the back door. Given the restrictions that a0(Lt) > 0, and a(Lt)

being bounded from above, it seems that (19) is a reasonable choice.
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from having a unique steady state with zero education and slow growth, to

having a unique steady state with faster growth and positive education.

The switch from zero to positive education occurs when a(Lt) exceeds

ρ/(1− ρ), i.e., when population exceeds

bL = ρ

θ(1− ρ)
. (21)

[We are assuming ρ/(1− ρ) < a∗ so that the switch occurs before a(Lt) has

reached its maximum; cf (19).]

2.2 The full dynamical system

The full dynamics of this model are characterized by a non-linear four-

dimensional system of difference equations. One can write this system in

terms of the variables xt, gt, et, and Lt, where (recall) xt = AtX/Lt is effec-

tive resources per worker; that approach is taken by Galor (2005).9 Here we

instead write the system in terms of At, gt, et, and Lt. The two ways are in

principle equivalent, but as we shall see, looking at the difference equation

for Lt while keeping At (rather than xt) constant helps us understand the

oscillatory population dynamics in the Malthusian regime.

First use the human capital production function in (16) to write per

worker income, zt, given in (1), as a function of the four state variables At,

9In fact, the original GW article (different from Galor 2005) analyzed an approximate

system, where Lt was kept constant, thus making it three-dimensional and somewhat easier

to visualize. To simulate the model we need to write down all four difference equations

explicitly.
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gt, et, and Lt, i.e.,

zt =

·
et + ρτ

et + ρτ + gt

¸α ·
AtX

Lt

¸1−α
≡ z(At, gt, et, Lt). (22)

Next, use the expression for fertility in (8), and the expression for education

time in (20), to write

nt =



γ
τ+φ(et,Lt)

if z(At, gt, et, Lt) ≥ ez
1− ec

z(At,gt,et,Lt)

τ+φ(et,Lt)
if z(At, gt, et, Lt) ∈ (ec, ez)

0 if z(At, gt, et, Lt) ≤ ec


≡ η(At, gt, et, Lt), (23)

where (recall) ez = ec/(1− γ).

We can now write the full system as

At+1 = [1 + g(et, Lt)]At

gt+1 = g(et, Lt)

et+1 = φ(et, Lt)

Lt+1 = η(At, gt, et, Lt)Lt

. (24)

Note that we have parametric expressions for everything in this system, from

using (18), (19), (20), (22), and (23). Putting numbers on these parameters,

and choosing a set of initial values for the state variables (A0, g0, e0, and L0),

it is in principle straightforward to simulate the model.10 Before doing that,

however, we want to give some intuition behind an interesting result which

will show up in the simulations in the Malthusian phase of development: the

oscillatory growth pattern of population.

10The algorithm looks as follows. Given parameter values, and an initial state vector,

(A0, g0, e0, L0), we use (24) to compute the state vector in the next period: (A1, g1, e1, L1).

Using (A1, g1, e1, L1) as new inputs in (24) we then calculate (A2, g2, e2, L2); and so on.
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2.2.1 Reduced form population dynamics

Consider an economy situated in a Malthusian regime, where education time

is constrained to zero. We can approximate the population dynamics in

this economy by keeping the other state variables (et, gt, and At) constant.

Letting At be constant implies that gt = 0. Together with et = 0, this implies

that ht = h(et, gt) is constant. We can then write the difference equation for

Lt defined by (23) and (24) as:

Lt+1 =


¡
γ
τ

¢
Lt if Lt ≤ eL¡

1
τ

¢ £
1− ΩL1−αt

¤
Lt ≡ Ψ(Lt) if Lt ∈ (eL, eeL)

0 if Lt ≥ eeL
. (25)

where

Ω = ec
hα[XA]1−αeL = ¡1−γ

Ω

¢ 1
1−αeeL = ¡ 1

Ω

¢ 1
1−α

. (26)

This follows directly from (8). Using zt = [h]
α [AX/Lt]

1−α, and setting et+1 =

0, we see that zt ≥ ez amounts to Lt ≤ eL. Likewise, zt ∈ (ec, ez) amounts to
Lt ∈ (eL, eeL); and zt ≤ ec amounts to Lt ≥ eeL.
The difference equation in (25) can be illustrated in a simple 45-degree

diagram, as shown in Figure 3. Given that γ > τ , the function lies above

the 45-degree line for Lt ≤ eL. The steady state is given by the intersection
of Ψ(Lt) with the 45-degree line, which may be with a negative or positive

slope. Appendix A shows that the slope is positive if

τ >
1− α

2− α
≡ τ osc, (27)
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in which case the steady state is non-oscillatory; if the inequality is reversed

the steady state is oscillatory.11 Figure 3 shows an oscillatory steady state

(parameters are set as in the baseline case in Table 1; see below). As illus-

trated, starting off outside the steady state population levels will rise and

fall in chaotic and complicated patterns.

These cycles have a Malthusian character. In economies with small pop-

ulations (Lt ≤ eL) effective resources are abundant, so per-worker income is
high (zt ≥ ez), and fertility is at its maximum level, γ/τ . As population ex-

pands, and effective resources per worker are depleted, a Malthusian backlash

arrives when resource scarcity pushes fertility below replacement and popu-

lation falls in levels from one period to the next (see Figure 3). What drives

the oscillations is the feature that fertility is determined by the residual of

per-capita income, after subsistence consumption is covered. Thus, there is

always some level of population where per-capita income cannot cover sub-

sistence consumption, pushing fertility to zero and population to extinction

in the next period.

From Figure 4 we can understand intuitively what will happen when

simulating the full system, where At, et, and gt evolve endogenously. Note

that At is always growing, albeit slowly when Lt is low [see (18)]. In terms of

Figure 4, an increase in At shifts out the function mapping Lt to Lt+1, thus

raising the (“quasi”) steady state population size. The economy looks as if

it “chases” its steady state. Things suddenly change when population comes

to exceed bL, defined in (21). This is the threshold above which a quality-
11If the slope is between −1 and 0, the steady state is oscillatory but (locally) stable; if

the slope is less than −1 the steady state is oscillatory and unstable.
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quantity substitution sets in, making the population growth rate drop.

2.3 Simulating the full system: the baseline case

2.3.1 Parameter values

The numerical values in the baseline case are given in Table 1, together with

brief explanations for all parameters. Below follows some motivation for how

the values are chosen.

We let each period correspond to 20 years, corresponding to the length

of one generation (cf e.g. Boldrin and Jones 2002).

The labor share of output, α, is set to 0.6, which is the same as in e.g.

Hansen and Prescott (2002, Table 3).

The fixed time cost, τ , is set to 0.15. We may interpret this as each

child carrying fixed costs (i.e., excluding education) of about 15% of the

parent’s income. This is in line with Haveman and Wolfe (1995) who estimate

total expenditures on children in the U.S. in 1992 to 14.5% of GDP. The

main components are the opportunity cost of the mother’s time (but not the

father’s), and direct costs such as clothing and food. Other items, such as

elementary and secondary education, are also included, although they would

perhaps better belong to education time, et, rather than τ . (Higher education

is not included, though.) Excluding these items total child expenditure would

fall to a little over 10% of GDP. In that sense, 0.15 may be slightly too high

a number for τ . However, a lower τ creates bigger oscillations in population;

with τ somewhere below 0.135 population at some point becomes extinct.

With τ at 0.15 we get some oscillations without population becoming extinct.
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It could thus be a reasonable compromise.12

The gross population growth rate (i.e., fertility) in the modern growth

regime, which we denote n∗, is set to one, meaning that population converges

to a constant in levels under modern growth.

The rate of technological progress in the modern growth regime is set to

fit the growth rate of per-worker income, zt, to 2.4% per annum (cf Hansen

and Prescott 2002, Table 1). With constant population size, education, and

technological progress, using the goods production function in (22), we see

that the growth rate in zt equals (1− α) = 0.4, times the growth rate of At,

which we denote g∗. This implies a value for g∗ of about 2.36.

Education time in the modern growth regime, which we denote e∗, can

be interpreted as spending on education in the modern growth regime as a

fraction of GDP, which is about 7.5% in the U.S.A. today [see de la Croix

and Doepke (2004)]. We thus set e∗ = 0.075.

Next we derive expressions for g∗ and e∗ in terms of the exogenous pa-

rameters of the model. To this end we use (17) and (18), recalling that a(Lt)

approaches its maximum level, a∗, in the modern growth regime. This gives

g∗ = (a∗)2 τ(1− ρ)

e∗ = a∗τ(1− ρ)− ρτ
. (28)

Given the target values for e∗, g∗, and τ above we can compute what the

exogenous parameters a∗ and ρ must be; the resulting values are shown in

12One could also get closer to 15% if using a higher estimate of the mother’s opportunity

cost of having children, as discussed by Haveman and Wolfe (1995, Footnote 2).
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Table 1.13

We then set γ so that population is constant in the modern growth regime.

Using (8), we see that under modern growth n∗ = γ/(τ + e∗). Given n∗ = 1

and e∗ and τ chosen as above, this gives γ ≈ 0.225.
The remaining parameters (θ, X, and ec) are all normalized to one. These

are neutral in the sense that after calibrating initial conditions (see below),

they play no role.

2.3.2 Initial conditions

The initial population level, L0, is set to a fraction of bL as given by (21).
Recall that bL is the level of population above which education time becomes
operative and growth spurts. The lower we set L0, the longer it takes before

an industrial revolution sets in, but the shapes of the growth paths are not

affected once it arrives. We set L0 = 0.05bL. This suffices to get about 30
generations (about 600 years) of Malthusian stagnation.

We set initial technology, A0, so that population is constant in the first

period, i.e., we drop the economy off in the “quasi” steady state it would stay

in if technology was constant (cf Figure 3). Given that initial income, z0, falls

between ec and ez (which will soon be seen to hold), from (8) we see that initial
fertility is given by n0 = (1/τ ) [1− ec/z0]. Setting this equal to one, we get
13We can use (28) to solve for ρ in terms of e∗, g∗, and τ :

ρ = −g
∗ + 2e∗

2τ
+

vuutµg∗ + 2e∗
2τ

¶2
−
Ã
[e∗]2 − τg∗

τ2

!
,

(noting that ρmust be positive, thus disregarding the negative root); a∗ equals g∗/(e∗+ρτ).
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z0 = ec/(1−τ).14 Using (16) to (19) we see that we can write h0 = 1/[1+θL0].

The expression for zt in (1) gives z0 = [1/(1 + θL0)]
α[XA0/L0]

1−α, which is

set equal to the desired value for z0. Given the choice of L0, this gives A0 as

in Table 1.

Initial education, e0, is set to zero, and initial technological change, g0, is

set to ρτθL0 [cf (18) and (19)]. Given the values of ρ, τ , θ, and L0 this gives

g0 as in Table 1.

2.3.3 The simulations

Figures 5 to 9 show the simulated time paths for some of the more impor-

tant variables. The time paths become highly oscillatory, so to distinguish

the broad movements from the shorter cycles we show the moving-average

values over 5 periods (about 100 years), centered on the mid-period. Such

smoothing could perhaps also give an idea about how the paths would look if

using a setting with more realistic demographics (for example, agents could

live for 15 periods of 5 years and bear children over 5 of these periods). It

may also make the results more comparable to the experience of the whole

of (Western) Europe, where different regions’ cycles may not have been syn-

chronized.

Figure 5 shows growth rates and education. Population growth oscillates

strongly (despite being averaged out over 5 periods), which matches what

we see in Figure 2. Growth in per-worker income fluctuates with population

through the dilution effect.

The overall pattern is consistent with the three-stage process that Galor

14Note that z0 = ec/(1− τ) < ez = ec/(1− γ), since τ < γ.
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and Weil described; notably the growth rates of technology and population

rise simultaneously through a so-called post-Malthusian phase, before diverg-

ing. Note also, however, that per-worker income grows quite slowly long after

technology growth has started to climb, due to the dilution effect from rising

population. Income growth converges to 2.4% per year, as we have calibrated

it.

Figure 6 shows the levels of technology, population, and effective resources

per adult (xt = AtX/Lt). Note how xt and Lt move in opposite directions

until Lt stabilizes in levels, and xt takes off.

Figure 7 shows where population size reaches the threshold level, bL, as
given by (21), after which point education starts rising. This coincides with

a decline in population growth, and a spurt in technological progress in the

other diagrams.

Figure 8 shows the levels of consumption and per-worker income. The

fluctuations reflect those in effective resources per worker, and thus popula-

tion; cf Figure 5.

Figure 9 shows how the volatility of population growth becomes quite

large if not averaging over 5 periods. This can also be compared to the

volatility in population levels in Figure 5; a relatively small fall in population

levels can mean a large drop in population growth.

Note how population growth becomes more volatile in the beginning,

before stabilizing in the modern growth regime. Intuitively, with very slow

changes in technology population stays close to the (“quasi”) steady state

where we dropped it off when choosing the initial conditions. As population

levels rise, technological progress accelerates. In terms of the reduced form
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population dynamics shown in Figure 4 the steady state starts moving to

the right as technology levels increase. When “chasing” the steady state, the

economy’s population dynamics become more volatile.

3 Sensitivity analysis

3.1 A higher τ

To generate time paths without oscillations we can set the time cost of

children, τ , equal to (or above) its oscillations threshold, τ osc, as given

by (27). Given the baseline choice of α = 0.6, we raise τ from 0.15 to

(1 − α)/(2 − α) ≈ 0.28. We then recalibrate the values for ρ, a∗, and γ, as

well as the initial conditions L0 and A0. These are summed up in Table 2.
15

The simulated paths for growth rates and levels for some variables are

shown in Figures 10 and 11. As seen, they are clearly smoother than in the

baseline case, although there is a small oscillation in population growth over

the first couple of periods (having to do with the threshold being calculated

from a reduced-form setting; note also that we are not smoothing the paths).

The peak population growth rate is lower, since the maximum fertility rate,

γ/τ , is lower due to the higher τ . Little else differs from the baseline case.

Notably, the timing of the take-off is not altered visibly. The reason is that we

have calibrated initial population, L0, to the same distance from threshold

15The procedure is the same as in the baseline case. Given the baseline values for e∗

and g∗, and the new value for τ , we compute a∗ and ρ using (28). We choose γ to set

n∗ = γ/(τ + e∗) = 1. We set L0 to 5% of the resulting new level of bL [see (21)]; and A0
so that initial fertility, n0, equals 1.
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population level, bL, at which the quality-quantity substitution sets in [see
(21)].

It is not easy to say how realistic this value of τ is. If we interpret τ

literally as a fixed time cost carried by each child, 28% of the parents’ time

endowment may seem extremely high, far above e.g. the 15% estimate of

Haveman and Wolfe (1995). (They include much more than the pure time

cost, so 15% should constitute an upper bound.) However, since the fraction

ρ of the time cost effectively constitutes a form of human capital investment

in the child, a more liberal interpretation would suggest that the pure fixed

time cost corresponds to (1 − ρ)τ . Given the recalibrated value for ρ (see

Table 2), one can see that (1− ρ)τ ≈ 0.04. This is close to the numbers used
in some calibrations of related models, such as Echevarria and Merlo (1999).

3.2 Perpetual youth

One might conjecture that the two-period life structure is what drives the

oscillations — it is not. To see this, now let agents die after the second,

and later, periods of life with some exogenous probability, m < 1. (We

abstract from child mortality; or, rather, we may think of nt as representing

the number of surviving children.) This setting is essentially a “perpetual

youth” model à la Yaari (1965).16

The only difference to the two-period life setting is that population now

evolves according to: Lt+1 = Ltnt+(1−m)Lt, where (1−m)Lt is the number
of adults surviving for another period of life. The full dynamical system is

16The term perpetual youth is borrowed from Blanchard and Fischer (1989, Section

3.3). It stems from the probability of death being independent of age.
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thus identical to that in (24), except for the last row where we add (1−m)Lt
to the right-hand side.17 Setting m = 1 brings us back to the two-period life

setting.

3.2.1 Reduced form population dynamics

To get an intuitive idea of how the dynamics change, consider first what

happens in the reduced form case, where At, gt, and et are constant. As

shown graphically in Figure 12, and is also seen analytically from (30) in

Appendix A, lowering m while holding fixed all other parameters at their

baseline values shifts the function for Lt+1 upwards, at a given Lt. However,

it still intersects the 45-degree line with a negative slope; the steady states

are oscillatory also when m < 1.

Intuitively, lower mortality means larger population in steady state. More

people today means less food, and thus lower fertility, and — if fertility falls

low enough — fewer people tomorrow than today. Put another way, larger

population means higher “Malthusian pressure,” which is what drives the

oscillations.

In a sense, the perpetual youth setting is more likely to show oscillatory

population dynamics than the two-period life setting. As shown in Appendix

A, in the perpetual youth setting the condition for the steady state to be non-

17We implicitly assume that those adults who live to the next period costlessly update

their human capital to the level of the next generation. To relax this assumption we would

have to keep track of a large set of heterogenous cohorts with different levels of human

capital.
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oscillatory — analogous to that in (27) — becomes:

τ >
1− α

1 +m(1− α)
≡ τ osc, (29)

meaning that τ osc is falling in m; a lower m means a higher τ osc. Put another

way, if α and τ are such that the steady state is oscillatory (τ < τ osc) in the

baseline setting (where m = 1), that will hold also in the perpetual youth

setting (where m < 1).

3.2.2 Recalibrating the parameters

This reasoning holds when keeping constant all other parameters at their

baseline values. Whether it holds also when recalibrating the model depends

on if, and how, the critical parameters, α and τ , change in the recalibrations.

The required recalibrations refer to the population growth rates; to be

able to compare the paths to that of the baseline case we must make pop-

ulation constant under modern growth and in the initial period. Constant

population under modern growth now implies that n∗ = γ/(τ + e∗) = m,

which we target by recalibrating γ.18 Population being constant in the first

period means that n0 = (1/τ) [1− ec/z0] = m. Having set L0 equal to 5%

of bL, as in the baseline case, this gives a new value for A0. (The procedure
is identical to that in the baseline case; see above.) The changes are sum-

marized in Table 2, for m = 0.5 and m = 0.25. Crucially, α and τ are not

recalibrated.

Figure 13 shows the reduced form population dynamics for m = 0.5 and

m = 1. Notably, the intersection with the 45-degree line occurs with a

18We could alternatively adjust τ . As shown in Section 3.1, this could make the oscil-

lations go away regardless of m, so we do not consider that alteration here.
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steeper slope when m = 0.5, meaning that the perpetual youth steady state

is (locally) slightly more oscillatory than that of the two-period life setting.

Figure 14 shows the simulated paths for population growth rates in two

cases, m = 0.5 and m = 0.25, together with the path from the baseline two-

period life setting, m = 1, identical to that in Figure 9. Over the first 15-20

periods, or so, the oscillations are greater in the perpetual youth settings,

consistent with the local properties of the steady states shown in Figure

13. But the perpetual-youth paths are less volatile later. This is driven by

the lower recalibrated value for γ, implying lower levels for the maximum

fertility rate, γ/τ . Population thus expands at a slower rate when resources

are abundant, prolonging the stable phase before a Malthusian backlash sets

in. As a corollary, the hump-shaped time paths of the population growth

rate become less visible when m is lower. For m = 0.25 the path is flat for

over ten generations before population growth declines.

In sum, even if a perpetual youth setting can mitigate the swings, this

works only through the recalibration of the parameters, and it cannot make

them go away completely. Moreover, the reduction in the oscillations comes

at the cost of eliminating the hump-shaped population growth path, which

was one of the central patterns that the GW model was designed to explain

in the first place.

3.3 Alternative functional forms

At the cost of more complicated algebra, small variations on the functional

forms chosen in (16) and (18) can make the difference equation in (20) exhibit

multiple steady states. A zero-education steady state would then coexist
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with a high-education steady state at intermediate population levels, whereas

there would be a unique zero-education steady state for low population levels

and a unique high-education steady state for high population levels.19

Such a setting would probably generate much faster transition paths com-

pared to the simulations shown here. Initial increases in population would

have small (or no) effects as long as the economy stays in the zero-education

steady state. As population comes to exceed a critical level and the configu-

ration changes the zero-education steady state ceases to exist. At that point

in time education, and thus also technological growth, quickly converge to

the other steady state.

4 Conclusions

Among existing long-run growth models, the GW model is one of the more

complex creations around, simply because it has so many ingredients. It has

endogenous technological progress which depends both on population size

and on educational levels; it has endogenous fertility decisions, which depend

both on a quality-quantity choice (i.e., an education choice), and on whether

a subsistence consumption constraint is binding, or not; it has human capital,

which is increasing in education, but also being eroded through the process of

technological progress; finally, it has land entering the production function,

and being in fixed supply, so that population size has a negative effect on per

worker income. The GW modelling approach is in a sense about explaining

19Such a multiple steady state configuration would correspond to how GW draw Figures

3 to 5 in their article.
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“everything” in one unified framework.

Making a long story short, the GW model in the end produces a four-

dimensional non-linear system of difference equations. In the original article,

this is analyzed using two-dimensional phase diagrams where some of the

variables are held constant. An alternative way to understand the model

is to simulate it. To do this, we first specify functional forms, where GW

used only implicit forms. We then set parameters and initial conditions,

using common sense, facts, and by leaning on quantitative studies of other

long-run growth models.

We then simulate the model. On the whole, the model is seen to replicate

the growth paths we observe in data. To see this, compare the pattern in

Figure 1 to the simulation in Figure 4; note in particular the hump-shaped

pattern of population growth.

Somewhat more surprisingly, and not really explored by GW, the model

is able to generate oscillatory cycles in population. This fits well with the

patterns observed in historical data (see Figure 2 for Europe). Population

expands when resources per capita are abundant, eventually generating a

Malthusian backlash making population readjust downwards, after which

the cycle starts all over again.

We can calibrate the model to do away with these oscillations. If, for

example, the fixed time cost of children is sufficiently high, most results are

unaltered but all paths become non-oscillatory. However, some extensions

that may be expected to eliminate the oscillations do not do the trick. Al-

lowing adults to live for more than one period only means higher population

levels, thus pushing per-capita incomes closer to subsistence, amplifying the
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swings in population.

The GW model as presented here could be extended in many ways. There

is a theoretically interesting link between the oscillations in the GW model,

and those in Malthusian models with natural resource dynamics. Brander

and Taylor (1998) model population cycles in a related context, where a

human population consumes out of a finite, but renewable, natural resource.

The natural resource regenerates itself over time, but is depleted by humans’

harvests. Starting from a situation with abundant resources, population

grows since food is plentiful. When population levels become sufficiently

large, harvesting exceeds the natural regeneration rate, so the resource stock

starts to decline. Population growth, however, depends on the level of the

resource stock, and thus population keeps growing even as the resource stock

is shrinking. This continues until the resource stock reaches a point where

food scarcity sets in, and population starts to decline. The resource stock

continues to fall until population density is small enough to allow the natural

rate of regeneration to exceed the harvest rate, at which point the natural

resource starts to grow again. To capture this in the GW model we could

introduce a dynamic equation for Xt, which may now be interpreted as the

natural resource base. The dynamical system would become five- instead of

four-dimensional, but the simulation would follow the same algorithm.

Another, somewhat related, extension would be to allow for property

rights in land. As the GW model is formulated, land is distributed equally

so per-capita income depends on aggregate population. In an alternative

setting where each family owns a plot of land of fixed size, and parents care

about the income, or welfare, of each of their offspring, there would be an
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incentive for parents to reduce fertility in order not to dilute landholdings.

This would presumably alter the over-population features of the model, and

thus also the oscillations. On the other hand, to let per-capita income depend

on aggregate population seems realistic for societies where land is not owned

(hunter-gatherer societies), or if we think of X as including other natural

resources (e.g. fresh water).

At any rate, to simply postulate that each family owns a fixed plot of

land seems at odds with the facts. In many historical contexts groups of

people — clans, countries, etc. — have conquered new land when faced with

land scarcity. Ideally, to take the idea of property rights seriously one should

model them endogenously, and specify a technology for the appropriation of

land, as in e.g. Grossman and Kim (1995). If population size is an input

in land acquisition, that provides an extra motive for high fertility. In a

symmetric equilibrium, where all clans/families are identical, the outcome

may very well be over-population in the aggregate, with oscillations and

Malthusian backlashes, not necessarily too different from what happens in

the GW model as presented here.20

20See e.g. Grossman and Mendoza (2003) for a model where resource scarcity induces

more appropriative competition.

31



A Appendix

A.1 Reduced form population dynamics in a perpetual

youth setting

In the perpetual youth setting, the reduced form population dynamics are

given by Lt+1 = Ltnt+(1−m)Lt, keeping At constant and setting et = gt = 0.
Fertility, nt, is given by (8), and zt by (1). Setting et+1 = 0 we can then write:

Lt+1 =


©
γ
τ
+ 1−mªLt if Lt ≤ eL©¡

1
τ

¢ £
1− ΩL1−αt

¤
+ 1−mªLt ≡ Ψ(Lt) if Lt ∈ (eL, eeL)

(1−m)Lt if Lt ≥ eeL
(30)

where the expressions for Ω, eL, and eeL are the same as in (26). Note that
setting m = 1 brings us back to the original two-period life setting in (25).

A.1.1 Conditions for a non-oscillatory steady state

Given that γ > τ , from (30) we see that any (strictly positive) steady state

level of Lt — call it L — must lie on the (eL, eeL)-interval, and be given by
L = Ψ(L). Using (30) we see that

L =

·
1− τm

Ω

¸ 1
1−α
. (31)

This steady state is non-oscillatory if Ψ(Lt) intersects the 45-degree line with

a positive slope, i.e., if Ψ0(L) > 0, and vice versa the steady state is oscillatory

if Ψ0(L) < 0. Using (31), we see that ΩL
1−α

= 1 − τm, and using (30) we
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see that Ψ0(L) > (<)0 amounts to

Ψ0(L) =
¡
1
τ

¢ h
1− (2− α)ΩL

1−αi
+ 1−m

=
¡
1
τ

¢
[1− (2− α) (1− τm)] + 1−m > (<)0,

(32)

which after some algebra gives (29).
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Figure 1: Growth rates in Western Europe. Calculated from Maddison

(2003).
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Figure 2: Population growth rate for Europe. Calculated from McEvedy and

Jones (1978).
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Figure 3: Reduced form population dynamics (baseline parameters).
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Figure 4: Rough illustration in terms of the reduced form population dy-

namics of what would happen over time in the full dynamical system. That

is, the function mapping Lt to Lt+1 shifts out over time.
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Figure 5: The paths show the level of education time (100× et), and growth
rates of all other variables, in the baseline case.
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Figure 6: Levels of some variables in the baseline case.
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Figure 7: Education starts rising when the level of population reaches the

threshold, bL. (Baseline case.)
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Figure 8: Consumption and per-capita income levels, relative to subsistence

consumption, ec. (Baseline case.)
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Figure 9: The population growth rate in the baseline case, with and without

smoothing.
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Figure 10: The paths show the level of education time (100×et), and growth
rates of all other variables, when setting the fixed time cost, τ , higher.
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Figure 11: Levels of some variables when setting the fixed time cost, τ ,

higher.
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Figure 12: Reduced form population dynamics for different levels ofm, where

all other parameters are held at their baseline values.
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Figure 13: Reduced form population dynamics, where the parameters for

m = 0.5 have been recalibrated to make initial population the same as in the

baseline case.
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Figure 14: The paths for the population growth rate for different values of

m, and other parameters recalibrated.
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Parameters Interpretation Value

α labor share 0.6

τ fixed time cost of children 0.15

ρ educational part of τ 0.879

a∗ scale effect parameter 11.42

γ weight on fertility in utility function 0.225

θ scale effect parameter 1

X land 1ec subsistence consumption 1

m adult mortality 1

Endogenous variables Interpretation Value

e∗ Education, modern growth 0.075

g∗ Techn. growth, modern growth 2.362

n∗ Fertility, modern growth 1bL Threshold population 7.278

Initial conditions Interpretation Value

n0 Initial fertility 1

L0 Initial population 0.364

A0 Initial technology 0.870

e0 Initial education 0

g0 Initial techn. growth 0.048

z0 Initial per-worker income 1.176

Table 1: Parameter values, baseline case.
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Recalibrated

parameters,

intial conditions

Baseline τ = 0.28 m = 0.5 m = 0.25

ρ 0.879 0.851 0.879 0.879

a∗ 11.42 7.54 11.42 11.42

γ 0.225 0.355 0.1125 0.05625

L0 0.364 0.287 0.364 0.364

A0 0.870 0.951 0.704 0.638

Table 2: Recalibrated parameters and initial conditions, when different from

baseline.
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