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The least squares solution of a complex linear equation is in general

a complex vector with independent real and imaginary parts. In

certain applications in magnetic resonance imaging, a solution is

desired such that eachelementhas the samephase. Adirectmethod

for obtaining the least squares solution to the phase constrained

problem is described.
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1. Introduction

Consider the following linear equation given in the following equation:

Ax = b (1)

whereA is a complexm × nmatrix,b is a complexm-vector and x is a complex n-vector. Theminimum

norm least squares solution to Eq. (1) has 2n parameters: the real and imaginary parts of x, whichmay

also be represented in polar form as the amplitude and phase. However in certain applications, it is

reasonable to expect the phase paramenter for all elements of the solution to be the same and thus a

phase constrained solution is desired.

This is a nonlinear optimization problem and has been studied previously using iterative Gauss–

Newton search [1]. The present study derives an alternate, direct method for solving the phase con-

strained problem in which the minimum norm least squares solution is obtained such that the phase

of every element of x is identical.

∗ Tel.: +1 619 471 0520; fax: +1 619 471 0503.

E-mail address:mbydder@ucsd.edu

0024-3795/$ - see front matter © 2010 Elsevier Inc. All rights reserved.

doi:10.1016/j.laa.2010.07.011

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Elsevier - Publisher Connector 

https://core.ac.uk/display/82532952?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
http://www.sciencedirect.com/science/journal/00243795
mailto:mbydder@ucsd.edu


1720 M. Bydder / Linear Algebra and its Applications 433 (2010) 1719–1721

2. Direct method

A solution of the desired form is assumed, xreale
iφ , which comprises a real n-vector xreal and a real

scalar φ. Eq. (1) is then re-written as in the following equation:

Axreale
iφ = b (2)

The goal is to minimize the sum of squares of the residual r = b − Axreale
iφ over xreal and φ. Using

separable least squares [2] to isolate the linear terms, xreal can be obtained for any φ by equating

d(rHr)/dxreal to zero. This leads to the expression Mxreal = Re(AHbe−iφ), where M ≡ Re(AHA). The

pseudoinverseM† yields the minimum norm least squares solution:

x̂real = M†Re(AHbe−iφ) (3)

Note that the rank and condition number of M are not necessarily the same as those of AHA; in

particular, M can have full rank even when AHA does not.

Now the residual can be expressed as function of φ only and it remains to minimize rHr over φ.

r = b − AM†Re(AHbe−iφ)eiφ (4)

Making use of the identities AHA = M + iIm(AHA) andM†MM† = M† and dropping imaginary terms

(since rHr is real):

rHr = bHb − Re(AHbe−iφ)TM†Re(AHbe−iφ) (5)

Equating d(rHr)/dφ to zero yields the condition for obtaining a minimum.

− 2Im(AHbe−iφ)TM†Re(AHbe−iφ) = 0 (6)

Eq. (6) can be seen to be the imaginary part of (AHb)TM†(AHb)e−2iφ . For the imaginary part of this

expression to be zero, the overall phase must be zero which requires:

φ̂ = 1

2
∠(AHb)TM†(AHb) (7)

The least squares solution to the phase constrained problem is thus x̂reale
iφ̂ with the phase given by

Eq. (7) and the real vector given by Eq. (3).

3. Application to magnetic resonance imaging

In magnetic resonance imaging, the separation of water and fat signals commonly makes use of

the characteristic resonant frequencies of protons in water and fat molecules [3,4,5]. Differences in

frequency come about because of electron shielding around the various functional groups (–OH, –CH2,

–CH3, etc.), that cause protons to experience slightly different magnetic fields, typically several parts

per million of the main field.

Data are sampled at three time points to observe the change in signal. The relevant matrix for this

situation is given by Eq. (8), taking sampling times from Ref. [3] and the fat spectrum from Ref. [5].

A =
⎡
⎣
1.000 0.881 − 0.443i
1.000 0.119 + 0.895i
1.000 −0.701 − 0.381i

⎤
⎦ (8)

Simulated data were generated for range of water and fat combinations with water + fat = 1 and phase

0. Gaussian random noise with standard deviation 0.1 was added to the real and imaginary parts.

Estimates were calculated using unconstrained linear least squares and by phase constrained least

squares. The means and standard deviations of the estimated parameters were computed from 106

trials. Table 1 indicates mean values are identical for both methods but the standard deviations are up

to 41% higher when using the unconstrained method.
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Table 1 Simulation results for the unconstrained and phase constrained estimation of water and fat based on Eq. (8).

Results indicate mean values are identical for both methods while standard deviations are up to 41% higher in the

unconstrained case.

Water fat Mean (unconstrained) Mean (constrained) SD (unconstrained) SD (constrained) Ratio

1.0 1.000 − 0.000i 1.000 − 0.000i 0.0822 0.0820 1.002

0.0 0.000 − 0.000i −0.000 − 0.000i 0.0914 0.0649 1.408

0.8 0.800 + 0.000i 0.800 + 0.000i 0.0822 0.0801 1.026

0.2 0.200 − 0.000i 0.200 − 0.000i 0.0914 0.0664 1.376

0.6 0.600 − 0.000i 0.600 + 0.000i 0.0822 0.0751 1.094

0.4 0.400 − 0.000i 0.400 − 0.000i 0.0914 0.0722 1.266

0.4 0.400 − 0.000i 0.400 + 0.000i 0.0822 0.0670 1.227

0.6 0.600 − 0.000i 0.600 − 0.000i 0.0914 0.0814 1.123

0.2 0.200 + 0.000i 0.200 + 0.000i 0.0822 0.0603 1.363

0.8 0.800 + 0.000i 0.800 + 0.000i 0.0914 0.0884 1.034

0.0 0.000 − 0.000i 0.000 + 0.000i 0.0822 0.0584 1.408

1.0 1.000 + 0.000i 1.000 + 0.000i 0.0914 0.0912 1.002

4. Conclusion

A direct method has been derived for solving a complex least squares problem with constrained

phase. In application towater/fat separation inmagnetic resonance imaging, the advantage over linear

least squares is reduced standard deviation in the estimated parameters.
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