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1. INTR~JXJ~TI~N 

We propose a definition of a valuation of a commutative ring which 
includes, to the best of our knowledge, all existing definitions. Those are: 
the Artin definition of an absolute value introduced in order to yield the 
product formula for a global field, the Samuel notion of a subring whose 
complement is multiplicatively closed, the Manis notion of a valuation 
mapping onto an extended group, and, most fundamental, the Krull notion 
of a valuation of a field (see [2], [S], and [6]). 

We introduce the notion of a V-monoid and define what we mean by a 
V-valuation of a commutative ring. This terminology is, at the insistence of 
the first author, to honor the second author, who originally brought to his 
attention the basic idea. We define the notion of a co-multiplicatively 
clbsed subset of a ring (CMC subset, for short) and establish a natural 
bijective correspondence between isomorphism classes of V-valuations of 
a commutative ring R and the CMC subsets of R. We call certain 
V-valuations formally finite and show that the above correspondence 
induces a bijective correspondence between the formally finite V-valuations 
and the CMC subrings of R. 

We investigate the structure of V-monoids and introduce several opera- 
tions on V-monoids. We determine the structure of all finite V-monoids 
and show that each such occurs as the target of a V-valuation of a com- 
mutative ring. We show that the V-monoids in several other classes are 
realizable as the targets of V-valuations of commutative rings. We conclude 
with a determination of all V-valuations of a number field. 

In a forthcoming paper entitled “Complex-Valued Places and CMC 
Subsets of a Field,” the authors characterize the nonring CMC subsets of 
a held F. Given a complex-valued place Q: B -+ C on F, i.e., cp is a ring 
homomorphism defined on a valuation subring B of F and q(B) is a sub- 
field of C, let A = { XE B 1 lqxl < 1). Then A is a nonring CMC subset of F 

264 
0021-8693/89 $3.00 
Copyright Q 1989 by Academic Press, Inc. 
All rights of reproduction in any form reserved. 

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Elsevier - Publisher Connector 

https://core.ac.uk/display/82523594?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1


V-VALUATIONS, 1 265 

(use t = i in Definition 2.13). Moreover, every nonring CMC subset of F is 
defined in this manner by a complex-valued place cp on F and cp is essen- 
tially unique. In that same paper it is shown that the intersection of all 
CMC subsets of a field consists of zero together with the roots of unity in 
the field. 

By a “ring” we mean a commutative ring with identity. By a “ring 
homomorphism” we mean a ring homomorphism which preserves the 
identity. We write Xc Y if X is a proper subset of Y and X\ Y for 
(.ulx~X, x$ Y}. B y “order-homomorphism” we mean a map which is both 
order-preserving and sum-preserving. 

2. V-VALUATIONS 

If G is a nontrivial totally ordered abelian group, then 

G,, =Gu (‘3r,) 

is an example of the next concept. 

DEFINTION 2.1. By a V-nzonoid we mean a triple (r, +, < ) such that: 

(i) (r, + ) is a commutative monoid. 
(ii) (T, < ) is a totally ordered set with a maximum which we will 

denote by 01. 

(iii) For all CI, 8, y in r, 

(iv) For all VEX, 

y+cG=c.o. 

(v) For all ix, PER’, 

Cr</3=C-3YEI- such that cc+y<O</I+y. 

Notation 2.2. For a V-monoid r we write 

p(r)= (YEr/ odi?), p+(r)= (ydy o<+& 

N(T)= +rl y<oo), N-(r)= (YErl y<o}, 
r-t = r-i,> ( CO ). 

EXAMPLE 2.3. Let r,, = {O). r, is essentially the only V-monoid in 
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which 0 = co; we refer to r,, as the trivial V-monoid. Let rr denote the 
V-monoid ((cx, 0, /I>, + , < ), where 0 is the zero, D is the infinity, 
a+cc=cq and a<O<p. 

EXAMPLE 2.4. For V-monoids A and A we write 

(A#A, 0, s)=(A’uA’u{a3), 0, s), 

where the indicated union is disjoint and with @ and 5 defined as follows: 

A, @Az=A,+122 for all AI, d, in A’, 

b, @S,=6,+6, for all 6,, c!& in A’, 

A+6=6 for all LEA and all 6~4’, 

c~<A<E for all HEW, all LEA’, and all EEP(A’), 

CXI is an absorbent maximum and we preserve the given orders within 
A’ and A’. 

One verities that A #A is a V-monoid, in particular that A’ and A’ are 
closed under addition, using the lemma that follows. We call A # A the 
sharp product of A and A. 

LEMMA 2.5. Let r be a V-monoid. Then, 

a<P and y<6*a+y<p+c% 

In particular, 

cl,p<GCi=-Lx+p<m 

ProoJ Suppose CI < /? and II< 6. Let p, q E r be such that 

a+p<O<P+p and y+r]<O<b+tj. 

Then, 

which implies that 

Remark 2.6. One easily checks that the sharp product is associative 
with identity the trivial V-monoid. Let I be a totally ordered set with mini- 
mum, which we denote by 0. Let {Ai }i, I be a family of V-monoids. Let 
I-= (U,,A) u (“~‘1, w ere h the indicated unions are disjoint. Defining 
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addition and an order as in (2.4), one checks that r is a V-monoid, called 
the sharp product of the family (A i > iE I. 

We next describe the internal version of this construction. 

DEFINITION 2.7. For I- a V-monoid we call an element e E r a sharp 
idempotent if 0 < e, e = e + e, and A, v A, = r, where 

A,= {yEr/ y+e=e}, 

and 

A,= (yd- y+e=y}. 
Remark 2.8. If e is a sharp idempotent in a V-monoid r, then A, and 

A, are V-monoids and rz A, # A,, where isomorphism has the obvious 
meaning. 

EXAMPLE 2.9. For IZ a positive integer we let 

r,, = rl # . . . # rl (12 copies). 

Recall that T,,= {O}. 

DEFINITION 2.10. For a ring R by a V-valuation of R we mean a pair 
(a, r), where r is a V-monoid and v: R -+ r is a surjective map such that: 

(a) V(U) = u(r) + v(s) for all r, s E R, and 

(b) 3 a unit t E R such that: 
(i) min(v(~),u(s)),<v(Y+S)+u(t)Vr,sER, and 

(ii) u(s) < 0 3 3n E N such that m(s) + u(t) -c 0. 

If t = 1 satisfies (b) we say (u, f) is formally finite. Otherwise, we say (~1, r) 
is formall)> infinite. 

Remark 2.11. Let z’: R + r be a V-valuation. Since 1’ is surjective, 
t)(l)=0 and v(O)=%. One checks that v: C -+ R, given by 
D(Y) = - log( Irl) is a V-valuation of C with t = 4. 

DEFINITION 2.12. For V-valuations (v, r) and ()r, A) of a ring R, we 
say (ZT, rj is isomorphic to (w, A) if there exists an isomorphism 0: r+ A 
such that D c u = 1%‘. 

DEFINITION 2.13. For a ring R we call a subset A of R a CMC subset 
if 
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(a) AA G A, (R\A)(R\A) c R\A, 0,l E A, and 

(b) 3 a unit t E R such that: 

(i) a,b~A*t(a+6)~A, and 

(ii) s$A=>3n~N such that snt$A. 

A CMC subset A of R that is also a subring of R will be called a CMC sub- 
sing of R. 

Remark 2.14. A ring R can be viewed as a CMC subset of itself. Let A 
be a CMC subset of a ring R. Notice that A = - A. For Y E R, let 

(A:r)= (.YER 1 KSEA}. 

One checks that the set of all such is linearly ordered by inclusion. With 
this one checks that the CMC subset A is a subring if and only if t = 1 
satisfies (b) above. 

THEOREM 2.15. There exists a natural bijective correspondence between 
the class of all isomorphism classes of V-valuations of a ring R and the set 
of ail CMC subsets of R. This cerrespondence is given b-v 

(v, T)HA, = {rER I OGv(rj). 

Furthermore, this induces a natural bijective correspondence between the 
class of all isomorphism classes of formally finite V-valuations of R and the 
set of all CMC subrings of R. 

ProoJ: Let (v, r) be a V-valuation of R and let A, = (r E R 1 0 6 v(r)}. 
One easily verifies that both A, and R\,A, are closed under multiplication. 
Let t be a unit of R satisfying (2.10b). One checks that t verities (2.13b). It 
is obvious that A, depends only on the isomorphism class of (v, T). 

Now suppose A is a CMC subset of R. Define an equivalence relation on 
R by declaring 

r-s if A:r=A:s. 

Write V(Y) for the equivalence class of r and let f, denote the set of all such 
equivalence classes. Define addition by 

v(r) + v(s) = v(rs); 

one checks this is well-defined, commutative, and associative and that r/l 
has v( 1) as its zero and v(0) as co. Define 

v(r) < u(s) if A:r~,4:s; 
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one observes this is well-defined and that (r ,4, d ) is a totally ordered set. 
One further checks that (r,, + , d ) is a V-monoid and that u: R -+ rA is 
a V-valuation. We refer to rA and v: R -+ rA as the standard V-monoid and 
standard V-valuation associated with A. 

Using the lemma that follows, one verifies that these associations are 
inverse to each other. Since a CMC subset A is a subring of R if and only 
if A is closed under addition, this correspondence induces a bijective corre- 
spondence between the class of isomorphism classes of formally finite 
V-valuations of R and the set of CMC subrings of R. 

LEMMA 2.16. For a V-monoid r and IX, /I E r, 

~<+.p(z-j:~dyr):p, 

where for an arbitrary element 6 E r, 

p(r):6= +rj y+hiqr)). 

Proof. This follows from (2.1~). 

The construction of the standard V-monoid associated with a CMC sub- 
ring of a ring was mentioned in an unpublished paper of Griffin [43. 
However, the idea was not further developed in that preprint. 

3. SOME STRUCTURE AND REALIZATION QUESTIONS 

DEFINITIONS 3.1. We say a V-monoid r is complete if 

(i) Every subset of r has an infimum in I’, and 

(ii) inf(X+ Y) = inf X+ inf Y, where 

x+ Y= (x+y 1 XEX,4’E Y). 

By a completion of a V-monoid r we mean a pair (cp, A), where: 

(i) A is a complete V-monoid. 
(ii) cp: T-r A is an injective order-homomorphism such that q(O) = 0 

and q(a)= W. 
(iii) For all 6EA,3X&Tsuch that c?=infco(X). 

THEOREM 3.2. Let r be a V-monoid. There exists an essentially unique 
completion (cp, r^) of I-, where essentially unique means that if (II/, A) is 
another completion of r, then there exists a unique isomorphism G: r” --, A 
such that G c’ cp = $. 
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Proof. Introduce an equivalence relation on the power set of r by 
declaring 

x- Ye P(T): x= P(T): Y. 

Here, for an arbitrary subset Z of r, 

P(T):Z= (YEZ- 1 y+zEP(ZyzEZ}. 

Write [X] for the equivalence class of X and let r” denote the set of all 
such equivalence classes. 

Define 

_ [X]+[Y]=[X+Y]; 

one checks this is well-defined, associative, commutative, and has [ {0}] as 
its zero. 

Define 

CJA G c Yl if P(r): XL P(r): r; 

one checks this is well-defined, [@I is an absorbent maximum, and that 
(rA , < ) is a totally ordered set. One further checks that r” is a 
I’-monoid. 

One checks that 

inf(CXilIiEI= IJ xi [ 1 iEI 

and verifies that r” is a complete V-monoid. 
Define cp: T-t r” by cp( y) = [{y}]. Clearly, cp is a sum-preserving. 

By (2.16), rp is injective and order-preserving. One observes [X] = inf q(X) 
for each XG r and hence (cp, r ” ) is a completion of r. 

Let (0, X) and ($, A) be completions of f. Define r: C + A by 

r(0) = s(inf8(X)) = inf $(X). 

One checks this is well-defined and is an isomorphism using the two 
lemmas which follow. The uniqueness of z is easily checked. 

LEMMA 3.3. In a complete V-monoid A, for any subset X of A, 

il=infXoP(A):A=P(A):X. 

Proof. Let A=infX. Clearly, P(n):IE P(A): X. Suppose 

Odx+p vx E x. 
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Then, 

O<inf(X+ {p))=infX+p=l+p, 

which says that p E P(n): 1. Hence P(n): ,I= P(n): X. 
Now suppose P(/i ): ;1= P(/i ): X. Just suppose x < 2 for some .‘c E X. 

Then, there exists p E /1 such that 

x+p<o<a+p, 

contradicting the assumption that P(n): ;1= P(A): X. Hence A < inf X. Just 
suppose ,I < inf X. Then there exists p ~/i such that 

l+p<OdinfX+pd-r+p vx E x, 

again contradicting our hypothesis. Thus A = inf X. 

LEMMA 3.4. Zf (0, LJ is a completion of the V-monoid r and X, Yc r. 
then 

P(T): XE P(Z-): YO p(z): e(x) c p(z): e( Yj. 

Proof Assume that P(r): XE P(T): Y. Suppose 

O<B(x)+a vx E x. 

Write 0 = inf 6(Z) for some ZC X. Then 

0 6 qxj + etz) = etx + z) vx E x, z E z. 

Hence 

Odx+z VXEX, ZEZ 

as 0 is injective and order-preserving. Thus 

ZE P(T): XE P(T): Y 

so that 

Thus 

o<y+z VJ’E Y,z-EZ. 

o<e(jg+e(z) VJ’E Y,ZEZ 
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and hence 

0 < inf(8( Y) + e(Z)) = inf e( Y) + inf 13(z) 

=inf8( Y)+a 

G e(v) + (T vy E Y. 

Therefore 0 E P(C): e( Yj. 
Conversely, assume that 

P(C): e(x) G P(C): e( Y). 

Suppose 

Odx+y VXEX. 

Then 

which implies 

0 6 e(x) + e(lq vx E x, 

o<e(,,)+e(y)=e(y+jg V}’ E Y. 

Since 8 is injective and order-preserving 

o<y+y V’yE Y. 

Thus yeP(T): Y. 

DEFINITION 3.5. We call a V-monoid r Boolean if 

Y+Y=1’ V]‘Er. 

PROPOSITION 3.6. For a Boolean V-monoid r, the completion I-^ of r is 
again Boolean. 

Proof: Let 0 E I’̂ . Write 0 = inf q(X) for some X E r. As r is Boolean, 
X+ X= X by the lemma which follows. Hence 

0 + 0 = inf q(X) + infq(X) = inf cp(X+ X) = inf q(X) = cr. 

LEMMA 3.7. For r a totally ordered commutative monoid and for e and 
f idempotents of r, either e + f = e or e + f =J: 
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ProoJ: Without loss, assume that e <J: One checks that 

Ode*e+f=f and J”dO*e+f=e. 

If e < 0 <f. then e +f is e or f according to whether the sum is negative or 
positive. 

EXAMPLE 3.8. Let L be a totally ordered set with a maximum, which 
we will denote by co. Let L* denote the dual totally ordered set. Let 

I-(L)=L*u{o]uL, 

where the indicated union is disjoint. Define a commutative addition on L 
by 

1 

max{x, I-I) if x, J* E L 

x+y= 
min(x, ~1) if x,y~L* 

4’ if x=z* EL*, J-EL, and z<p 
x if x=z* EL”, MEL, and y<z. 

Define d on T(L) so as to preserve the given orderings on L and L* and 
so that 

L* = W(f(L)) and L= Pf(T(L)). 

A tedious, but straightforward, check shows that (T(L), + , < ) is a 
Boolean I’-monoid. 

THEOREM 3.9.. For r a complete Boolean V-monoid, 

where 

L= P+(T). 

Proof. The theorem follows from the next two lemmas. 

LEMMA 3.10. For r a complete V-monoid, define 0: I---+ I- bjl 

a(Y)=inf(P(T):yj. 

Then, CJ is order-reversing and satisfies CT’ = 1. 

Proqf: By (3.3), 0 < y + g(y) V y E IY Hence 

481/126/2-2 
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Suppose CI </I in r. Then there exists 6 E r such that 

Hence 

Thus Q is order-reversing. 
Since O<o(y)+y, a*(y)< y. Just suppose r?(y) <y. Then there exists 

6 E r such that 

a2(y)+6<OQy+6. 

Since 0 < y + 6, a(y) < 6. Thus o(6) < CT’( y ). Hence 

0 G 6 + 0th j 6 6 + o*(JJ), 

contracting the assumption that a’(y) + 6 < 0. 

LEMMA 3.11. For r a complete Boolean V-monoid, the restriction of a to 
P + (.T) defines an order-reversing, sum-preserving bijection from P + (r) onto 
N- (I-). 

ProoJ: By (3.10), the restriction is an order-reversing bijection from 
p+(r) onto N-(r). 

Say y < S in P + (r). Then o(6) < g(y) and hence (3.7) implies 

y+6=6 and ~(~+6)=~(6)=~(~)+0(6). 

COROLLARY 3.12. For a finite V-monoid r, there exists a unique non- 
negative integer n such that rz I-,. 

ProoJ Using (2.5), one verifies that r is Boolean. Hence r is a com- 
plete Boolean V-monoid. By (3.9), 

rzrr(P+(r))2rn, 

where IP’(r)l =n= jP+(r,,)l. 

EXAMPLE 3.13. For r a nontrivial V-monoid and Z = r\{O, co }, we 
write 

where K IPBZ are indeterminates. For y EZ and a monomial 
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M=Xy, ...XYn such that yi + ... + y, = y, we say M has degree y. Each 
UEZ has degree 0. For y~rl=r\{aJ) we write R,, for the Z-span of ah 
monomials of degree y (we are regarding 1 as a monomial of degree 0). 
Writing R in lieu of R(T), one checks that R = @ ;E r’, R, and that 
R;,R, c R,,, try, CI E r’. Finally, we write 

A(T)= 1 R;.. 
-;sP(T) 

THEOREM 3.14. For a nontrivial V-monoid r such that either T is 
Boolean or r’ is cancellative, ,4(r) is a CMC subring oaf R(T) with standard 
V-monoid naturally isomorphic to K 

ProoJ For a nonzero element r of R, write 

r = r7! + . . . + r.. , n 

where yl < ... < yn and 0 # ryl E R,, (i = 1, . . , n). We refer to rj,l as the 
initial component of r. Define u(r) = y, . Define o(O) = ,x. 

One checks that for r, s E R, 

min(v(r), v(s)} d v(r + s). 

Now suppose 

0 # r = ri,, + . . + r:.. 

O#s=s,, + ... +s,“,. 

In the cancellative case, one observes that the initial component of rs is 
ri’,s,, and hence, v(rs) = v(r) + v(s). 

Hence we assume r is Boolean. Without loss, by (3.7), we may assume 
that yi +CI, =yi. 

Case 1. 11, <aI. Using (3.7), we see that for yi>yI,yi+aj fyi 
(I <j < n). Thus the y ,-component of rs is 

where we sum over all aj such that y1 + ,aj = yl. As the rightmost factor is 
a sum of nonzero components of distinct degrees, z s,, # 0. Hence 
ryl (x sq ) is nonzero and is the initial component of rs. Hence 

v(rs) = v(r) + v(s). 

Case 2. aI < y1 . This case is handled similarly to case 1. 
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Case 3. a, = yl. When y 1 = 0 the 1’ 1 component of rs is ry,s,, . So 
assume y1 ~0. By (2.5) the yl-component of rs is 

where the first sum is over all cli such that c(~ < cli and cli + y1 = JJ, and the 
second sum is over all 1: such that yI <yi and yj+ a, = Mu. 

We write B=Z[XB]gts, where 

Write Y in lieu of X,,,. By Lemma 3.16 to follow, R,,, = YB[ Y]. One 
checks, using (3.16), that -r,,,s,, and rl,,(Cszi j+s,,(x rlJ are in B[ Y], 
and that (C s,, ) and (C ryj ) are in B. Hence, examining the degree in Y, we 
see that 

Thus, the initial component of rs has degree IJ,, that is, 

u(rs) = v(r) + u(s). 

Summarizing, t’: R + f is a formally finite V-valuation with A, = A(T). 

LEMMA 3.15. For a Boolean V-monoid r, any positive integer n, and 

Yl, ..a, yn in r, 

Yl+ ... +y,z=yl-==-yl+yj=yl (j= 1,..-, n). 

ProoJ: One uses induction on II. 

LEMMA 3.16. For a nontrivial Boolean V-monoid r and ;J E r\{O, CQ}, 

R, = x,ZCx, lae/ly, 

where Ay= {flET\(O, c0} 1 fi+y=y}. 

Prooj This follows easily from (3.15). 

EXAMPLE 3.17. For G a totally ordered abelian group and A a 
V-monoid we define 

G@A=GxA’u(cc$ 

where A’= A\(a) and + and < are defined as follows: addition on 
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G x d’ is component-wise and co is absorbent; x) is maximal and G x A is 
ordered lexicographically. One checks that GO A is a I’-monoid. 

Remark 3.18. For G and H totally ordered abelian groups and A a 
I’-monoid, one checks that 

G@(H@A)z(GxHj@A, 

l@AzA and G@l~l, 

where G x H is the lexicographic product of G and H and 1 denotes the 
trivial group. 

Notation and Remarks 3.19. Recall that for a V-valuation t’: R + r we 
write 

A,.= {I.ER IO<2’(rj]. 

A,. is a CMC subset of R. For r nontrivial, we further define 

and 

Notice that P, = {Y E R 1 3s E R\,A, s.t. rs E A, ) and that I, = (A, : R) = 
(P, : R) is a prime ideal of R. If A, + I, c A,, then v naturally induces a 
V-valuation 

such that A, = A,/Z, and I,- = (0). 
In the formally finite case, P, is precisely the set of zero divisors of the 

,4,-module R/A, and we always have A, + Z, c_ A,. Thus if r is realizable 
as the target of a formally finite V-valuaton v, we may assume that the 
source of v is an integral domain and that 1, = {0 >. 

THEOREM 3.20. Suppose W: R + A is a formally finite V-valuation of an 
integral domain R such that I,? = (0). Suppose G is a totally ordered abeiian 
group. Then, there exists a formally finite V-valuation 

v: R(G)+G@A, 

where R(G) denotes the group ring of G over R. 
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Proof. We may and shall assume G is nontrivial. Write 
R(G) = Ogcc Rt,. For 0 # x = x fg t, in R(G) let 

Supp(x)= (gEG I r,#O}. 

Define U: R(G j + G, by 

i 

min Supp(x) 
u(x)= co 

if x#O 
if x = 0. 

One checks that tl is a formally finite V-valuation and that AU/P, g R. 
Let w: A, + A be the canonical homomorphism A, + AJP, followed by 

W: R + A, where we identify AJP, with R. 
Define u: R(G) + G 0 A by 

u(x) = 
{ 

(4-v), wL(x,x)) if x#O 
co if x = 0. 

One checks that v is a formally finite V-valuation with image G @ A. 

DEFINITION 3.21. We say a V-monoid r is ditlisible if for all y E r and 
all ~EN*=N\(O), 

has a solution in T. 

Remark 3.22. In a V-monoid r, CY < /I implies ncc < n/l for all n E N”; 
this follows from (2.5) and induction on n. Hence in a divisible V-monoid, 
for each y E r and each n EN, nx = y has a unique solution in K 

DEFINITION 3.23. By a ditlisible hull of a V-monoid r we mean a 
pair (0, A) where: 

(i) A is a divisible V-monoid. 
(ii) 19: r-+ A is an injective order-homomorphism such that 0(O) = 0 

and 0( IX) = CCI. 
(iii j For all 6 E A, 3n EN* such that nb E im 8. 

THEOREM 3.24. Let I- be a V-monoid. There exists an essentially unique 
dioisible hull (0, D(T)) of r, w h ere essentially unique means that if (I,$, A) is 
another divisible hull of r, then there exists a unique isomorphism 
o: D(T) + A such that cs 0 9 = $. 
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Proof: Define an equivalence relation on TX N* by 

(c&n)-(p,nz)omcr=np. 

Write a/rz for the class of (a, n) and let D(T) denote the set of all such 
equivalence classes. 

Define 

One checks this is well-defined, associative, and commutative with O/l as 
the zero element. 

Define < on D(T) by 

One checks that d is well-defined and that (D(T), 6 ) is a totally ordered 
set with absorbent maximum co/l. Finally, one checks that (D(T), +, < ) 
is a I’-monoid. 

Define 8: f -+ D(T) by t?(y) = y/l for all y E r. It is clearly an order- 
homomorphism and it is injective by (3.22). 

Now suppose ($, d) is another divisible hull of K For cc/n E D(T), let 
~‘(a/%) = 6, where 6 Ed is the unique solution to ns = $(a). One checks this 
is welldefined and is an isomorphism of V-monoids. The uniqueness of cr 
is easily checked. 

DEFINITION 3.25. Let r be a I’-monoid. 
If for all a, /I E P + (f’), 3 a positive integer n such that /3 < ncc we say 

P(r) is Archimedean. 
If for all CI, /3 E N-(I), 3 a positive integer n such that na < p we say 

N(r) is Archimedean. 
If P(r) and N(T) are Archimedean we say r is Archimedean. 

THEOREM 3.26. Suppose I- is an Archimedean V-monoid with a nontrivial 
unit; let CI E r be a positive unit. Then, there exists an injective order- 
homomorphism 8: l-‘-+ R into the additive reais such that e(u) = 1. 6~ 
particular, r is cancellative. 

Proof: For fl< co, let 

S, = (m1n.Q 1 n>O,madnP). 

One checks that S, is a nonempty proper subset of Q and that if m/n ES, 
and p/q d m/n, then p/q E S,. Hence S, is bounded from above. Let 

e(p) = sup s,. 



280 HARRISON AND VITULLI 

One checks that S, + S, c Sp+).. Hence sup(Sp + S, ) < sup SD+,,. Thus, 
e(@)+B(y)dO(fi+y) for all fi,y~F. 

Let 

TD= {m/n~Q 1 n>O,ma>n/?}. 

Then TB = Q\S,. One checks that inf TD = sup S,. 
One checks that Tp + T, c To + ),. Thus inf TB + y < inf( Tp + T, ). Hence 

0(/I + y) d e(p) + B(y). Combining, we have e(fl + y) = /3(p) + e(y) for all 
p, y E r. 

Notice that S,= {M/FZEQ 1 n>O,ma<O}= {m/nEQ 1 n>O,m<O). 
Hence e(O) = 0. 

One checks that if a < y, then S, c S, and, consequently, e(p) 6 B(y). If 
a<y, then 36~r’ such that fi+6<O<y+6. Since ,f?+6<0, S8+&c 
N-(Q). Since O<y+6,0/1~S,+~. Hence 0(p) < f3( y). Therefore, 0 is an 
injective order-homomorphism. 

We will find the following two results useful in the last section. 

LEMMA 3.27. Let r be a V-monoid with a negative unit /I and suppose 
N(T) is Archimedean. Then, r is Archimedean. 

ProoJ: Let LX = -p. Suppose O<JJ < co. Choose 6 E r such that 
y + 6 < 0. Note that 6 < 0. By hypothesis, there exists in 2 1 such that 
rnfi < 6. Now y + nz/I d y + 6 < 0 implies y + nz/3 < 0 and hence 1; < nzc~ Thus 
for every y E P+ (r), there exists m > 1 such that y <ma. 

Again, suppose 0 <y < co. Choose E in r such that E < O<y + E. By 
hypothesis, there exists II 3 1 such that IZE < p. Now 0 6 n( y + E) = ny + n.z d 
ny + /I implies c( < ny. Thus for every y E P + (r) there exists n > 1 such that 
cI < ny. 

Now suppose 0 < y, 6 < XX Without loss, assume that y < 6. Choose 
m, n 2 1 such that 6 <nzc( and o! dny. Then 6 <nza dmny. Hence P(r) is 
Archimedean and, therefore, r is Archimedean. 

LEMMA 3.28. Let r be a V-monoid with a negative unit /I and suppose 
that for each y E N- (r) there exist positive integers m and n such that np < y 
and my -C /I. Then, r is Archimedean. 

Proof By (3.27) it suffices to show that N(T) is Archimedean. Suppose 
y, 6 E N- (r). Without loss, assume that y < 6. Choose positive integers m 
and n such that nz6 < p and n/? d y. Then 

nm6 < nfi d y. 

Hence N(T) is Archimedean. 
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DEFINITION AND NOTATION 3.29. For a V-monoid r. let F(f) denote 
the set of all convex submonoids of N(f). One checks that ,FT(r) is totally 
ordered by inclusion. We define the rank of I- as the order type of P(r). 

THEOREM 3.30. A I/-monoid r has rank 1 e N(T) is Archirnedean. 

Proof. Assume that f has rank one. Then (0) c N(T) are the sole 
convex submonoids of N(r). Suppose E < /I < 0 and suppose, to the con- 
trary, that CI < fz/I Vn > 1. Let K = ( 1’ E N(T) / 3~2 1 such that nfl6y). One 
checks that K is a convex submonoid of N(T). Since (0) c Kc N(Tj, this 
is a contradiction. 

Now assume that N(T) is Archimedean. Suppose (01 c K and K is a 
convex submonoid of N(T). Suppose, to the contrary, that there exists 
x E N(T)‘\K. Choose b < 0 in K. Since K is convex we must have ‘Y < pi Let 
II 3 1 be such that nfl< a. Then fz/? E K implies (x E K, a contradiction. 

4. CMC SUBRINGS 

DEFINITIONS 4.1. We define a maxoid as a totally ordered commutative 
monoid with an absorbent maximum, which we denote by s(j. 

We say a submonoid A of a maxoid r is corzt1e.x if CI < /? < 7 and c(, ? E A 
implies /I E A. 

Given any submonoid 11 of a maxoid r, let 

U(Aj= (y~rj 3c(~/1 such that CI<<~). 

Notice that both U(n) and P,U(A) are closed under addition. 

EXAMPLE 4.2. For a maxoid r, let K be a convex submonoid of N(r). 
Notice that U(K) = K+ P(f ). Define an equivalence relation on r by 

Write [a] for the class of CI and let T/K denote the set of all such 
equivalence classes. 

Define a commutative addition on T/K by 

EmI + cm = I3 + PI; 

one checks this is well-defined and associative with [0] as its zero. 
Define Q on T/K by 

[a] < [/s] -G- U(K): CY G U(K): 8. 
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One checks that (T/K, d ) is a totally ordered set with absorbent maxi- 
mum [a]. Finally, one verifies that (r/K, + , d ) is a V-monoid. 

Let r: r+ T/K denote the canonical map. Then r is a surjective order- 
homomorphism. Letting K(z) = ( y E r 1 y < 0, r(y) = [0] }, one checks that 
K(T)= K. 

Notation 4.3. For a surjective order-homomorphism of maxoids 
a: r+ A, we let 

K(o)= {YEr/ yd0, o(y)=O). 

THEOREM 4.4. Let r be a maxoid, A a V-monoid, and let (T: r+ A be a 
surjective order-homomorphism. Then, K(o) is a convex submonoid of N(T) 
and there exists a unique map q: T/K(o) -+ A such that q 0 T = CJ and cp is an 
isomorphism of V-monoids. 

ProoJ: Clearly, K(o) is a submonoid of N(r). Suppose CI E K(o) and 
c( < b < 0. Then, 0 = a(a) < @(/I) < o(O) = 0 and, hence, o(b) = 0. Thus K(a) 
is convex. 

Define cp: T/K(o) + A by (P([~J])= o(~J). Let K= K(o) and notice that 
y E U(K) o 0 < ~(1’). To see q is well-defined, suppose o(a) < o(p). Since cp 
is surjective, there exists ?/ E r such that 

o(a + ‘I’) = CT(a) + o(y) < 0 d CQ) + o(y) = o(p + y). 

Thus 0 $ U(K): a + I’, and 0 E U(K): B + 7. Hence [cl] + [y] < [p] + [v] 
and, consequently, [a] < [/?I. Thus q is well-defined. Clearly cp is the 
unique map such that q 0 T = g. 

cp is a surjective order-homomorphism. One checks that K(q) = { [0] }. 
By the following lemma cp is an isomorphism. 

LEMMA 4.5. Let 0: r+ A be a surjective order-homomorphism of 
V-monoids such that K(o)= (O}. Then, cr is an isomorphism. 

Proof. Suppose ~(a) = c(P) in A. We may and shall assume that ad p 
in r. Suppose, to the contrary, that a < fl. Then, there exists y E I- such that 
a+1’<0</3+>1. Thus a(cr)+a(y)=a(a+y)<O<a(p+y)=o(/?)+o(~), 
contradicting the assumption that c(a) = o(P). Thus B is injective and, 
hence, is an isomorphism. 

DEFINITIONS 4.6. Let A E R be a CMC subring. We say a subring B of 
R is an intermediate ring if A G B, B is CMC in R, and 

B:xcB:y*A:xcA:y Vx, y E R. 
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Let o: R -+ r be the standard V-valuation associated with A. We say a 
formally finite V-valuation MY R -+ A is composite with v if there exists an 
order-homomorphism 0: f + A such that 0 0 v = II!. 

THEOREM 4.7. Let v: R + r be a formally finite V-valuation atzd let 
A = A,. There exists a bijective correspondence between the set of all inter- 
mediate rings to A in R and the class of all isomorphism classes off^ormaIlr 
finite V-valuations composite with v. 

ProojY Let B be intermediate to -4 in R. Let H’: R -+ A be the standard 
V-valuation associated with B. Define 0: r-+ A by ~(v(r)) = )1(r) ‘dr E R; 
one checks that 0 is a well-defined order-homomorphism using the assump- 
tion that B is intermediate. Hence VI’ is composite with v. 

Suppose tv: R -+ A is a formally finite V-valuation and U: r + A is an 
order-homomorphism such that c 0 u = it’. Letting B = A,., one checks that 
B is intermediate to A in R. One checks that this depends only on the 
isomorphism class of r~ and, finally, that these associations are inverse to 
each other. 

COROLLARY 4.8. Let A be a CMC subring of a ring R and let v: R -+ r 
be the corresponding V-valuation. Then, there exists a bijective corre- 
spondence between the set of convex submonoids of N(T) and the set of all 
rings intermediate to A in R given bJ> KH A,, t,, where T: I---+ T/K is the 
canonical map. 

ProojY This follows from (4.7), (4.4), and (2.15 j. 

DEFINITION 4.9. Let A be a subring of a ring R. We say an ideal P of 
A is strong111 prime in R if P c A and R\ P is closed under multiplication. 

Notation and Remark 4.10. For A c R a CMC subring, let 

P= Z(R/A) and I= (A: R), 

where Z(R/A) denotes the set of zero divisors of the A-module R/A. 
Note that P is strongly prime in R. In addition, if U: R + r is the 
standard V-valuation associated with A, then P = (r E R j 0 < v(r)] and 
I= (rE R 1 u(r)= m}. 

For B c R an intermediate ring, let 

Q = Z( R/B). 

Notice that Q is strongly prime in R and that ZC Q G P. 
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ProoJ The first containment is apparent. Suppose be Q; choose 
s E R\B such that bs E B. Since 

B:scBsB:bs 

and B is intermediate, there exists a E R such that as $ A and abs E A. Thus 
bEZ(R/A)=P. 

LEMMA 4.11. Suppose A is a proper CMC subring qf a ring R and that 
the A-ideal Q is strongly prime in R. Then, for each x E R either Q c A: x or 
A:xcQ. 

ProoJ: Suppose there exists b E Q\(A : x) for some x E R. Let a E (A : x). 
Now b E Q and ax E A implies bax E Q. Since bx E R\.4 c R\Q and Q is 
strongly prime, a E Q. Thus A : x E Q or Q c ,4 : x for all x E R. 

LEMMA 4.12. Let .4 and B be CMC subrings of a ring R such that A c B. 
Then, B is intermediate to -4 in R if and only if for all s E R\B and b E B, 
there exists a E R such that as $ A and ab E A. 

ProoJ: Suppose B is intermediate to A in R. Let s E R\B and b E B. 
Then B:scBcB:b and hence A:scA:b. Thus there exists aER such 
that as $ A and ab E A. 

Now assume that for all s $ B and b E B there exists a E R such that as $ A 
and ab E A. Suppose B : xc B : y. Then there exists u E R such that ux $ B 
and zq’ E B. By hypothesis, there exists a E R such that aux $ A and auy E A. 
Hence A:xcA:y. 

Notation 4.13. Suppose A is a proper CMC subring of a ring R. Let Q 
be a strongly prime A-ideal such that IC Q c P. Define B(Q) and B( Q ) 
by 

B(Q)={rERI QcA:r} 

and 

B(Q)={~ER( QcA:r}. 

We point out that B(Q) need not be a subring of R. 

LEMMA 4.14. Suppose A is a proper CMC subring of a ring R. Let Q be 
a strongly prime A-ideal such that IG Q E P. Then, B(Q) is an intermediate 
ring, Q is an ideal of B(Q), and Z(R/B(Q)) c Q. For C an intermediate ring 
such that Q = Z( R/C), either C = B(Q) or C = B(Q). 
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Proof One checks, using the fact that Q is strongly prime in R, that 
B = B(Q) is a subring of R. 

Suppose Y, s E R\B. Then, by (4.1 l), A : I’ c Q and A : s G Q. Suppose 
brs E A. Then br E A : s E Q and Y # Q implies b E Q. Hence A : I’S c Q, i.e., 
I’S E R’,>B. Thus B is CMC in R. 

Suppose s E R’\B and b E B. Then, by (4.1 i), A : s c Q c A : b. Thus B is 
intermediate to A in R by (4.12). 

Suppose b E B(Q) and a E Q. Then Q c (A : b2) implies ab2 E A and 
a*b’ E Q. Hence ab E Q. Thus Q is an ideal of B(Q). 

Suppose s E R\B and bs E B. Then, A : s E Q c A : bs. Choose 
a E (A : bs)\Q. Then abs E A implies ab E Q. Since a $ Q and Q is strongly 
prime, b E Q. Thus Z(R/B) c Q. 

Let C be an intermediate ring such that (2 = Z( R/C). Suppose Q c A : P. 
Let a E (A : r)‘\.Q. Then ar E C and u $ Z(R/C) implies r E C. Thus B(Q) c C. 
Now Q is a C-ideal implies Q c A : c Vc E C. Thus Cc B(Q). Suppose 
B(Q) c C. Then there exists c E C such that Q = (A : c). Since C is inter- 
mediate, C must contain each element J! of R such that A : y = Q, i.e.: 
C= B(Q). 

THEOREM 4.15. Let A be a proper CMC subring of a ring R. 

(i) For B c R intermediate to A in R and (2 = Z( R/B), Q is strongly 
prime in R and IC Q E P. If Q #A : r Vr E R and there exists b E Q such 
thatA:b~A:cVcEQ,thenthereexistsxERsuchthatA:xcQcA:bx 

(ii) Suppose the A-ideal Q is strongly prime in R and Zc Q c P. 

Case (a). Suppose that Q#(-4:r)VrER,3bcQ such that 
-4:bcA:cVc~Q,andV’x~ReitherQcA:xor.4:bxcQ.Then,there 
does not exist an intermediate ring B such that Z(R/B) = Q. 

Case (b). Suppose that Q # (A : r) Vr E R and if there exists b E Q 
such that A:bcA:cvc~Q, then 3x~R such that A:xcQc,4:bs. 
Then B(Q) is the unique intermediate ring B such that Z(R/B) = Q. 

Case (c). Suppose that Q = (‘4 : r) for some r E R, and Qy @ Q 
some J such that Q = A : y Then, B(Q) is the unique intermediate ring B 
such that Z(R/B) = Q. 

Case (d), Suppose that Q = (A : r) for some r E R, Qy c Q Vy such 
that Q=A:J:~~EQ such that A:bcA:cVcEQ, and VXER either 
Q c A : x or A : bx c Q. Then, B(Q) is the unique intermediate ring B such 
that Z( R/B) = Q. 

Case (e j. Suppose that (2 = (A : r) for some r E R, QJ c Q Vy such 
thatQ=A:~,andif3b~QsuchthatA:bcA:cVc~Q,then3x~Rsucl~ 
that A : N c Q c A : bx. Then there are precisely two intermediate rings B 
with Z( R/B) = Q, namely, B(Q) and B(Q). 
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Moreover, for any strongly prime A-ideal Q such that Ic Q E P, exactly 
one of the above cases holds. 

ProoJ: 

(i) We already observed that Q is strongly prime and 1~ Q G P. 
Suppose Q# A : rVr~ R and there exists be Q such that A : bG 
A : c Ye E Q. Since B is intermediate, B : b c B : c VCE Q as in the proof 
of (4.7). As be Q = Z(R/B), there exists XE R\B such that bxg B. Since 
x # B, A : x G B : x G Q. Since bx E B and Q is a B-ideal that is contained 
in A, Q G A : bx. Thus A : x c Q c A : bx by our hypotheses. 

(ii) Now suppose Q is a strongly prime A-ideal and Zc Q G P. 

Case (a). This follows directly from (i). 

Case (b). Let b E Q. Suppose there exists CE C such that A : cc A : b. 
Choose z E (A : b)\( A : c). Since cz $ A and QB( Q) E Q, z $ B(Q). Thus 
b E Z(R/B(Q)). NOW suppose A : b G A : c Vc E Q. Let x be such that 
A : x c Q c A : bx. Then s $ B(Q) and bx E B(Q) implies b E Z(R/B(Q)). 
Thus QcZ(R/B(Q)). By (4.14), B(Q) is an intermediate ring such that 
Q = Z( R/B(Q) j. By the case assumption, B(Q) = B(Q), so it is the unique 
intermediate ring B with Q=Z(R/B) by (4.14). 

Case (c). Q = (A : r) implies Q E Z(R/B(Q)) and hence B(Q) is an 
intermediate ring with Q = Z(R/B(Q)). Since Qy @ Q for some y such that 
A : y = Q, Q is not an ideal of B( Q ) and consequently B( Q ) is not an 
intermediate ring B such that Q = Z(R/B). The conclusion follows from 
(4.14). 

Case (d). As in (cj, B(Q) is an intermediate ring with Q=Z(R/B(Q)). 
Let bEQ be such that A:bEA:cVcEQ. Since either QsA:x or 
A : bxc Q for all XE R, b is not a zero divisor for B(Q). Thus B(Q) is the 
unique intermediate ring B such that Z( R/B) = Q. 

Case (e). Since Qy G Q for all y such that Q = (A : y), B(Q) is a sub- 
ring of R and Q is an ideal of B(Q). One further checks that B(Q) is an 
intermediate ring. Suppose s E R\B( Q ) and bs E B( Q ). Then A : s c Q. 
Choose a E Q\(A : s). Since QB( Q ) = Q, abs E Q. Since as E R\A G R\Q, 
b E Q. Thus Z(R/B( Q)) E Q. Let b E Q. Suppose there exists c E Q such 
that A:ccA:b. Choose xE(A:b)\(A:c). Then bxEA and Q @ (A:x) 
implies b E Z(R/B(Q)). Now suppose A : b s A : c for all CE Q. Let x be 
such that A:xcQ~A:bx. Then x.$B(Q) and bxEB<Q>. Thus 
bEZ(RjB(Q)). So B(Q) is an intermediate ring with Z(RIB(Q)) = Q. 
As in (4.14), these are the only possibilities. 
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DEFINITIONS 4.16. We say a proper CMC subring A of a ring R is miG- 
nzal if there does not exist a CMC subring B of R such that B c A. 

Let f: Z -+ R be the canonical homomorphism. R is said to be absolutely 
integral if.f(Z) G R is an integral extension. 

By an algebraic number field we mean an algebraic extension of Q. 

Remark 4.17. For any proper CMC subring A of a ring R, there exists 
a minimal CMC subring B of R such that B c A. This follows directly from 
Zorn’s lemma. 

LEMMA 4.18. A ring R has no proper CMC subrings o R is absolutely 
integral. 

Proof: Suppose R has no proper CMC subrings. As the integral closure 
of f(Z) in R is the intersection of all CMC subrings of R 
([7, Theortme 8]), R is absolutely integral. 

Assume that R is absolutely integral. As every CMC subring of R is 
integrally closed in R [7, Theoreme 11, R has no proper CMC subrings. 

LEMMA 4.19. Let A be an integral domain. Then, A is absolutely 
integral o A is either a locally finite field or is isomorphic to a subring of 
the ring of integers in an algebraic number field. 

ProoJ Assume that A is absolutely integral. 

Case (a). Suppose that char A=p>O. Let F= Z/pZ and identify F 
with its image in A. Then Fc ,4 is an integral extension of domains 
implies A is a locally finite field. 

Case (b). Suppose char A = 0. Identifying Z with its image in A, Z c A 
is an integral extension of domains. Letting K denote the quotient field of 
A, Q c K is an algebraic extension of fields, i.e., K is a number field. Let 6 
denote the ring of integers in K. Then A c 6 since fi is integrally closed 
in K. 

Now assume that either A is a locally finite field or is isomorphic to the 
ring of integers in an algebraic number field. One checks that -4 is 
absolutely integral. 

THEOREM 4.20. Let A be a proper CMC subring of a ring R and let A 
denote A/P, where P = Z( R/A). Then, A is minimal * -2 is either a locally 
finite field or is isomorphic to a subring of the ring of integers in an algebraic 
number field. 

ProoJ: Suppose A is minimal. Then A has no proper CMC subrings 
For if B is a proper CMC subring of A and g: A + A is the canonical 
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homomorphism, then g-‘(B) is a CMC subring of R by Lemma 4.21 to 
follow. Thus 2 is either a locally finite field or is isomorphic to a subring 
of the ring of integers in an algebraic number field by (4.17) and (4.18). 

LEMMA 4.21. Let A be a proper CMC subring of a ring R, let 
P= Z(R/A), and let B be a CMC subring of A. If PC B, then B is CMC 
in R. 

Proof: Suppose P z B. Let r, SE R\B. Without loss, we may assume 
that either r, s E R\A or r, s E A\B or r E R\A, s E A\B. If r, s E R\A, then 
r.sE R/A c R\B. If rsE A\B, then rsEA\Bc R\B. Suppose rE R\A and 
s E A\B. Since s $ Z( R/A) = P, rs E R\A c R\B. Thus B is CMC in R. 

5. NUMBER RINGS 

For background material on absolute values of number fields, the reader 
is referred to the lecture notes of E. Artin [ 11. 

DEFINITION 5.1. We call a ring a number ring if for every proper CMC 
subring A of R, A/P is a locally finite field, where P= Z(R/A). 

Remark 5.2. It is well known that an algebraic number field (i.e., an 
algebraic extension of Q) is an example of a number ring. 

THEOREM 5.3. Let v be a formally infinite V-/-valuation of a number 
ring R. Then, there exists a ring homomorphisnz j R + C such that ~7 is 
isomorphic to w, where w(r) = 1 f (r)l for all r E R. 

Proof Let r be the target of u, let t be a unit of R satisfying (2.10b), 
and let CI = u(t). Since min(z,( I), v(O)} = 0 d ~(1 + 0) + u(t) = u(t) and u is 
formally infinite, CI is a positive unit of IY Let p = - c( and let 

K={yEN(T) 13na 1 such that nfldy). 

One checks that K is a convex submonoid of N(T) and that p E K. 
Let r: r+ I/K be the canonical map. Then, r(B) = 0 and, consequently, 

T(U) = 0. Write tl= T 0 u. One checks that 

min{fi(r), V(s))<i?(r+s) Vr, s E R. 

Thus V is a formally finite V-valuation on R. Let A = A,. 
We claim that A = R. Suppose, to the contrary, that A c R and let 

P = P,. Let s = t-l. Since U(S) = B and L’(s) = r(b) = 0, s E A\P. Since R is a 
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number ring and A c R is a CMC subring, A/P is a locally finite field. 
Hence there exists an integer n > 2 such that sn = 1 fp for some p E P. Now 

z$Y”) = m(s) = np < p, 

since /? is a negative unit in P. On the other hand, 

O=minlu(l),t~(p)~dtl(l +pj+cr, 

which implies 

a contradiction. Thus A = R and consequently, K = N(T) by (2.15 j 
and (4.2). 

We recall that since t satisfies (2.10bj, for all 1’ < 0 in r there exists a 
positive integer 12 such that rzy </I. Combining this with the fact that 
K = N(rj we deduce that IV(r) is Archimedean by (3.28 j. Hence F is 
Archimedean by (3.27). By (3.26) there exists an injective order- 
homomorphism Q: I- -+ R, with cr(u(tj) = 1. Let d = n‘(r)- 

Write EL= G 2 u: R + d. Then u(t) = 1 satisfies (2.10b). Notice that u and 
u are isomorphic; in particular, u is formally infinite. Consider P(R) as a 
V-monoid where the binary operation is multiplication and the order is the 
dual of the usual order on P(R). Then, 

r/: R, + P(R) 

defined by q(x) = 2 pX is an isomorphism of V-monoids. Let n = q(d) and 
let IV= rj 0 II. Notice that $1’ is isomorphic to u and hence $V is formally 
infinite. 

One checks that: 

(i) w(m) = w(I.) tv(sj Vr, SER. 
(ii) W(Y) = 0 o u(r) = cc Vr E R. 

(iii)’ cv(r + s) d 2 max{ \$‘(y), TV} Vr, s E R. 

By Lemma 5.4 to follow, we see that ~$1 satisfies 

-(iii) ~t’(r + s) < n’(r) + IV(S) Vr, s E R. 

Also notice that 1 = I+( 1) = )v((. - 1)‘) = u,( - 1)’ implies w( - 1) = 1. 
Let I= I, = (r E R I u(r) = co 1. Recall that I is a prime ideal of R. Write 

F for the quotient field of R/I. Notice that nfr -I- x) = w(r) for ail 
r E RI x E I. Thus )V induces a map 

p:R/I-+ P(R), 

431 IX-3 



290 HARRISON AND VITULLI 

given by p(F) = w(r) V’r E R. Extend p to F by 

p(i’ls) = w(r)/w(s) VrER,sER\I. 

One checks that p is well-defined and that p satisfies: 

0) PCV) = d-4 P(Y) VX,I’EF. 

(ii) p(~)==Oox=O V-u E F. 

(iii) P(x+Y)<P(x)+P(Y) Vx, JJ E F. 

Thus p is a classical absolute value on the field F. One checks that since 
MI is a formally infinite V-valuation, p is Archimedean in the sense of 
Cassels and Frohlich [3]. By the Gelfand-Tornheim theorem [3, p. 451 
there exists an injective homomorphism 

n:F-+C 

such that 

P(X) = I4x)I VSEF. 

Let f: R + C denote II 0 i o g, where g: R + R/I is the canonical map, and 
i: R/I+ F is the inclusion. Then f(r) = n(F/i) and hence 

w(r) = p(T/T) = If(r 

LEMMA 5.4. Let R be a ring and suppose IV: R --f P(R j satisfies: 

(a) w(r.9) = w(r) w(s) Vr,sER. 

(b) w(r + s) d 2 max{ w(r), w(s)} Vr,sER. 

Then, u’ satisfies 

(c) w(r + s) d w(r) + w(s) Vr,sER. 

ProoJ: By (b) and induction, for all m > 1, I= 2”‘, and rl, . . . ,r[ in R, 

w(r,+ ... +r,)<Zmax{w(r,)). 

Given n > 1, choose m such that 2’+’ <n B 2”. Notice that 2”’ < 2n. Now 

w(rI + ... +r,)=w(r,+ ... +r,+O+ ... +0) 

6 2’” max{w(r,)> 

d 2n max{w(r,)). 
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Thus, for all II > 1 and r,, ... , rn in R, 

w(r,+ ... +r,,)~2nmax(~r(ri)). 

In particular, for all rr> 1 and ri, ... , rn in R, 

w(r,+ ... +r,l)<2n[rv(r,)+ ... +w(r,,)]. 

Let r, s E R. Then 

[w(r + s)]” = w( [r + s]“) 

=w(~O(n)r’z~isi) 

<2(n+l) i (i=o~~~((YJfemi~i)) 

<2(n+l) i 2 
2 

( 0 i 
w(r)npiw$s)i 

i=O > 

=4(n+l) i ‘: 
( 0 

w(r)n--i IV(S)’ 
i=o 1 

= 4(iz + l)[w(r) + tv(s)]“. 

Thus 

[w(r+s)]“<4(n+ ~)[w(~)+w(s)]~ vn3 1, 

and hence 

w(r fs) <4”“(n + l)““[w(r) + w(s)] VI72 1. 

Letting IZ -+ co, we deduce that 

Notation 5.5. For R a ring, we write X(R) for the set of all proper 
CMC subsets of R, X,,(R) for the set of all proper CMC subrings of R. and 
let X, (R) = X(Rl\X,(R). For A E X(R), we write zl.* for the standard 
V-valuation associated with A. 

THEOREM 5.6. Let R be a field. Then, R is a finite dimensiotzal number 
field if and only [f  the following five conditions hold: 

(i j For all A E X(R), the t of Definition 2.13 may be chosen such 
that either t = 1 or 2t = 1. 
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(ii j X, (R) is nonempty and finite and X,(R) is infinite. 
(iii) For all nonzero I’ E R, {A E X(R) 1 V~ (r) # 0) is finite. 
(iv) For all nonzero TE R, n,(r) = 0 VA E X(R)- 30 #n EN with 

1” = 1. 

(v) For distinct elements A,, . . . . A,, in X(R), gr E R with r $ .4, and 
reA, n ... n A,,. 

Proox First we assume R is a finite dimensional number field. The 
proper CMC subsets of R correspond bijectively to the usual primes of R, 
the nonrings corresponding to the real and complex primes, and the CMC 
subrings corresponding to the proper Krull valuation subrings. This 
follows from Theorem 5.3 and a tedious, but straightforward, check; in 
particular, one verifies that noncomplex conjugate embeddings of R into C 
give rise to distinct CMC subsets of R. With this observation, (i)-(v) 
follow from well-known results (e.g., see p. 60 of [3] for (iii), p. 164 of [l] 
for (iv), and p. 39 of [l] for (v)). 

Conversely, assume (i)-(v) hold for the field R. By (ii) and Theorem 5.3, 
the characteristic of R is 0. By p. 111 of [S], R is an algebraic extension 
of Q (here one uses (v) to check that the topological space X,(R) is T, ). 
All that remains is to show that R is finite dimensional. Using (i), we see 
that for any finite dimensional subfield F of R and any A in X,(R), A n F 
is a CMC subset of F. By (5.3), A n Fc F and 2 $ A n F. Hence A n F is 
in X, (F). 

Let n denote the number of elements in X, (R). Let F be a finite dimen- 
sional subfield of R, let s denote the number of real primes of F, and let t 
denotes the number of complex primes of F. Then, dim F= s + 2t < 
2(s + t) < 2~2. Hence R is finite dimensional. 
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