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1. INTRODUCTION

We propose a definition of a valuation of a commutative ring which
includes, to the best of our knowledge, all existing definitions. Those are:
the Artin definition of an absolute value introduced in order to yield the
product formula for a global field, the Samuel notion of a subring whose
complement is multiplicatively closed, the Manis notion of a valuation
mapping onto an extended group, and, most fundamental, the Krull notion
of a valuation of a field (see [2], [5], and [6]).

We introduce the notion of a ¥-monoid and define what we mean by a
V-valuation of a commutative ring. This terminology is, at the insistence of
the first author, to honor the second author, who originally brought to his
attention the basic idea. We define the notion of a co-multiplicatively
closed subset of a ring (CMC subset, for short) and establish a natural
bijective correspondence between isomorphism classes of V-valuations of
a commutative ring R and the CMC subsets of R. We call certain
V-valuations formally finite and show that the above correspondence
induces a bijective correspondence between the formally finite V-valuations
and the CMC subrings of R.

We investigate the structure of ¥-monoids and introduce several opera-
tions on V-monoids. We determine the structure of all finite ¥-monoids
and show that each such occurs as the target of a V-valuation of a com-
mutative ring. We show that the V-monoids in several other classes are
realizable as the targets of V-valuations of commutative rings. We conclude
with a determination of all V-valuations of a number field.

In a forthcoming paper entitled “Complex-Valued Places and CMC
Subsets of a Field,” the authors characterize the nonring CMC subsets of
a field F. Given a complex-valued place ¢: B—C on F, ie., ¢ is a ring
homomorphism defined on a valuation subring B of F and ¢(B) is a sub-
field of C, let A={xe B | |px|<1}. Then 4 is a nonring CMC subset of F
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(use 7= 1 in Definition 2.13). Moreover, every nonring CMC subset of F is
defined in this manner by a complex-valued place ¢ on F and ¢ is essen-
tially unique. In that same paper it is shown that the intersection of all
CMC subsets of a field consists of zero together with the roots of unity in
the field.

By a “ring” we mean a commutative ring with identity. By a “ring
homomorphism” we mean a ring homomorphism which preserves the
identity. We write X< Y if X is a proper subset of ¥ and X\Y for
{x|xe X, x¢ Y}. By “order-homomorphism” we mean a map which is both
order-preserving and sum-preserving.

2. V-VALUATIONS

If G is a nontrivial totally ordered abelian group, then
G,.=Gu{x}

is an example of the next concept.

DEFINTION 2.1. By a V-monoid we mean a triple (I, +, <) such that:

(i) (I, +)is a commutative monoid.

(il) (I, <) is a totally ordered set with a maximum which we will
denote by oo.

(i) Forall o, f,yin [
a<P=a+y<p+y
(iv) Forallyer,
Y+ o = 0.
{v) Foralla, ferl,
a<f=dyel such that o +7y <0< B+ 7.
Notation 2.2. For a V-monoid I we write

P(IN={yel{0<y}, P*(I)={yel|0<y},
N(I={yelly<0}, N (DN={yel|y<0},
r'=rj{o}.

ExampLE 2.3. Let I'y={0}. I, is essentially the only ¥-monoid in
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which 0= co0; we refer to I', as the trivial V-monoid. Let I, denote the
V-monoid ({a, 0,8}, +, <), where 0 is the zero, f is the infinity,
a+oa=ao, and x <0< pf.

ExaMpLE 2.4. For V-monoids 4 and 4 we write
(A#4, ®, £)=(A'vd'u {w}, @, <),
where the indicated union is disjoint and with @ and < defined as follows:

A ®A,=A,+ 4, forall 4;,4,in A,

0,®06,=08,+0, for all §,, é,1in 4,

A+o=05forall leA’ and all 6e 4,

d<A<eforall 6e N (4), all Aie A’, and all € P(4'),

o0 is an absorbent maximum and we preserve the given orders within
A" and 4'.
One verifies that A #4 is a V-monoid, in particular that 4’ and 4’ are

closed under addition, using the lemma that follows. We call 4 # A4 the
sharp product of A and A.

LemMA 2.5. Let I be a V-monoid. Then,
a<p and y<d=>at+y<f+0.
In particular,
o <=0+ f<w0.
Proof. Suppose a < f and y <d. Let p, ne I be such that
a+p<0<P+p and y+n<0<é+n.
Then,
a+y+p+n<0<B+o+p+n,
which implies that
a+yp<p+9.
Remark 2.6. One easily checks that the sharp product is associative
with identity the trivial ”-monoid. Let I be a :otally ordered set with mini-

mum, which we denote by 0. Let {4,},., be a family of V-monoids. Let
I'=({J:ie 4})u {0}, where the indicated unions are disjoint. Defining
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addition and an order as in (2.4), one checks that I" is a V-monoid, called
the sharp product of the family {4;},.,.

We next describe the internal version of this construction.

DErINITION 2.7. For I' a V-monoid we call an element e I” a sharp
idempotent f 0<e,e=e+e, and A, U A, =T, where

A, ={yel'ly+e=e},
and
d,={yel|y+e=yp}.

Remark 2.8. If e is a sharp idempotent in a -monoid I, then A, and
A4, are V-monoids and I'= A, # 4,, where isomorphism has the obvious
meaning.

ExampLE 2.9. For n a positive integer we let
r,=I#---#1T, (n copies).
Recall that I'y={0}.

DerNiTION 2.10. For a ring R by a V-valuation of R we mean a pair
(v, I'), where I' is a V-monoid and v: R — I' is a surjective map such that:
(a) v(rs)=uv(r)+ov(s) for all r, se R, and
(b) 3 a unit e R such that:
(i) min{ov(r), v(s)} <v(r+s)+v(t) Vr,se R, and
(i) ov(s)<0=3neN such that no(s) + v(z) <0.

If =1 satisfies (b) we say (v, I') is formally finite. Otherwise, we say (v, I}
is formally infinite.

Remark 2.11. Let v: R— [ be a V-valuation. Since v is surjective,
v(1)=0 and v(0)=cc. One checks that »:C—-R_ given by
v(r)= —log(|r|) is a V-valuation of C with r=1.

DerFINITION 2.12. For V-valuations (v, I') and (w, 4) of a ring R, we
say (v, I') is isomorphic to (w, A) if there exists an isomorphism ¢: I — 4
such that gov=w.

DeriNrTioN 2.13. For a ring R we call a subset 4 of R a CMC subse:
if:
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(@) AA< A, (R\A)R\A)< R\4, 0, 1€ 4, and
(b) 3 a unit 7€ R such that:

(i) a,beA=1tla+b)e A, and

(ii) s¢A=3dneN such that 5" t ¢ A4.

A CMC subset 4 of R that is also a subring of R will be called a CMC sub-
ring of R.

Remark 2.14. A ring R can be viewed as a CMC subset of itself. Let 4
be a CMC subset of a ring R. Notice that 4 = — 4. For re R, let

(A:r)={seR|rseAd}.

One checks that the set of all such is linearly ordered by inclusion. With
this one checks that the CMC subset A is a subring if and only if r=1
satisfies (b) above.

THEOREM 2.15. There exists a natural bijective correspondernce between
the class of all isomorphism classes of V-valuations of a ring R and the set
of all CMC subsets of R. This cerrespondence is given by

(0, N~ A,={reR|0<u(r)}.

Furthermore, this induces a natural bijective correspondence between the
class of all isomorphism classes of formally finite V-valuations of R and the
set of all CMC subrings of R.

Proof. Let (v, ') be a V-valuation of R and let 4, = {re R|0<v(r)}.
One easily verifies that both 4, and R\ 4, are closed under multiplication.
Let ¢ be a unit of R satisfying (2.10b). One checks that ¢ verifies (2.13b). It
is obvious that A, depends only on the isomorphism class of (v, I').

Now suppose 4 is a CMC subset of R, Define an equivalence relation on
R by declaring

r~s if A:r=A4:s.

Write v(r) for the equivalence class of r and let I", denote the set of all such
equivalence classes. Define addition by

v(r)+ v(s)=v(rs);

one checks this is well-defined, commutative, and associative and that I",
has v(1) as its zero and v(0) as cc. Define

v(r) < o(s) if A:rcAd:s;
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one observes this is well-defined and that (I",, <) is a totally ordered set.
One further checks that (", +, <) is a V-monoid and that v: R— I is
a V-valuation. We refer to I', and v: R — I, as the standard V-monoid and
standard V-valuation associated with A.

Using the lemma that follows, one verifies that these associations are
inverse to each other. Since a CMC subset A is a subring of R if and only
if 4 is closed under addition, this correspondence induces a bijective corre-
spondence between the class of isomorphism classes of formally finite
V-valuations of R and the set of CMC subrings of R.

LEmMa 2.16. For a V-monoid I and o, fe I,
o< < P(I):0cP(I). B,
where for an arbitrary element S I,
P(Iy:6={yel|y+deP(I)}.
Proof. This follows from (2.1v).

The construction of the standard V-monoid associated with a CMC sub-
ring of a ring was mentioned in an unpublished paper of Griffin [4].
However, the idea was not further developed in that preprint.

3. SOME STRUCTURE AND REALIZATION QUESTIONS

DerinrTions 3.1, We say a V-monoid I is complete if

(i) Every subset of /" has an infimum in 7, and
(i) inf(X+ Y)=inf X +inf Y, where

X+Y={x+y|xeX yeY}

By a completion of a V-monoid I" we mean a pair (¢, 4), where:

(i) 4 is a complete V-monoid.
(ii) @: I — A is an injective order-homomorphism such that ¢(0)=0
and ¢(o0) = co.
(iii) For all 6e 4, 3X < I such that 6 =1inf o{X).

THEOREM 3.2. Let I' be a V-monoid. There exists an essentially unique
completion (@, I'") of I, where essentially unique means that if (y, 4} is
another completion of I', then there exists a unique isomorphism ¢: " — A
such that 6@ =1.
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Proof. Introduce an equivalence relation on the power set of I' by
declaring

X~Y<e PN X=P()Y.
Here, for an arbitrary subset Z of I,
P(I):Z={yel|y+zeP(INVzeZ}.

Write [ X] for the equivalence class of X and let I'" denote the set of all
such equivalence classes.
Define

[X1+[Y]=[X+7];
one checks this is well-defined, associative, commutative, and has [ {0}] as

its zero.
Define

[XI1<[Y] if PU):X<P():Y;

one checks this is well-defined, [f] is an absorbent maximum, and that
(™, <) is a totally ordered set. One further checks that I'" is a
V-monoid.

One checks that

it X, ier = U |

iel

and verifies that I"* is a complete V-monoid.

Define o: ' - I'" by o(y)=[{y}] Clearly, ¢ is a sum-preserving.
By (2.16), ¢ is injective and order-preserving. One observes [ X] = inf ¢(X)
for each X< I and hence (¢, I'") is a completion of I '

Let (8, X) and (i, 4) be completions of I". Define 7: X' — 4 by

1(0) = t(inf O(X)) = inf Y(X).

One checks this is well-defined and is an isomorphism using the two
lemmas which follow. The uniqueness of t is easily checked.

LeEMMA 3.3. In a complete V-monoid A, for any subset X of A,
A=inf X< P(A): A=P(A): X.

Proof. Let A=inf X. Clearly, P(4): A< P(A4): X. Suppose

0<x+p Vxe X.
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Then,

0<inf(X+ {p})=inf X+p=1+p,

which says that pe P(A): 4. Hence P(A): A= P(A): X.
Now suppose P(A): A=P(A4): X. Just suppose x<4 for some xeX.
Then, there exists p e A such that

x+p<0<i+p,

contradicting the assumption that P(A): A= P(A): X. Hence A <inf X. Just
suppose A < inf X. Then there exists p € A such that

A+ p<0<infX+p<x+p Vxe X,
again contradicting our hypothesis. Thus 1 =inf X.
LEMMa 34. If (0, %) is a completion of the V-monoid I’ and X, YT,
then

P(I): XS P(I'): Y< P(X): 0(X) = P(Z): 6( Y).

Proof. Assume that P(I'): X< P(I'): Y. Suppose
0<0(x)+o VxeX.
Write o = inf 8(Z) for some Z < X. Then
0<0(x)+0(z)=0(x+72z) VxelX, zeZ
Hence

0<x+z VxeX,ze”Z

as 0 is injective and order-preserving. Thus
ZeP(I': XcsP(I): Y
so that
0<y+:z VyeY, zeZ.
Thus

0<O(y)+6(2) VyeY, zeZ
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and hence
0<inf(0(Y)+ 0(Z))=inf 8( Y) + inf 8(Z)
=infé(Y)+o
<O(y)+o VyeY.

Therefore o€ P(2): 0( Y).
Conversely, assume that

Py 8(X)cP(2):6(Y).
Suppose
0<x+vy VxeX.
Then
0<8(x)+6(y) VxeX,
which implies
0<0(y)+0(y)=6(y+7y) VyeY.
Since § is njective and order-preserving
0<y+y VyeY.

Thus ye P(I): Y.

DEerFINITION 3.5. We call a V-monoid I" Boolean if

y+y=y Vyel.

PrOPOSITION 3.6. For a Boolean V-monoid I', the completion I'" of I is
again Boolean.

Proof. Let el ". Write g =inf ¢(X) for some X =I. As I' is Boolean,
X+ X=X by the lemma which follows. Hence

o+ o =inf p(X)+inf (X)=inf o(X + X)=1inf p(X) =0.

Lemma 3.7. For I a totally ordered commutative monoid and for e and
[ idempotents of I, either e+f=e or e+ f=f.
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Proof. Without loss, assume that e <f. One checks that
Oge=e+f=f and [f<O=>e+f=e

If e<0 <. then e+ fis e or faccording to whether the sum is negative or
positive.

ExaMmpLE 3.8. Let L be a totally ordered set with a maximum, which
we will denote by cc. Let L* denote the dual totally ordered set. Let

NL)y=L*u{0}ulL,

where the indicated union is disjoint. Define a commutative addition on L
by

max{x, y} if x,yelL

N min{x, y} if x,yel*

x+y= )

J y if x=z%eL* yel,and z<y
X if x=z*¥el* yelL, and y<z:.

Define < on /(L) so as to preserve the given orderings on L and L* and
so that

L*=N—(I(L)) and L=P*(I(L))

A tedious, but straightforward, check shows that (I'(L), +, <) is a
Boolean V-monoid.

THeOREM 3.9.. For I' a complete Boolean V-monoid,
I'~TI(L),
where
L=P*(I).
Proof. The theorem follows from the next two lemmas.
LeMMA 3.10. For I a complete V-monoid, define o: " — I by
a(y)=inf(P(I):y).

Then, o is order-reversing and satisfies o> = 1.

Proof. By (3.3), 0<y+oa(y)Vyel. Hence

0<y+p=a(p)<p Vy,pel.

481/126/2-2
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Suppose a < f§ in I'. Then there exists d € I" such that
a+0<0<f+6.
Hence
a(f)<d<a(n)

Thus o is order-reversing.
Since 0<a(y)+7, a*(y)<y. Just suppose 6>(y)<7. Then there exists
0 € I such that

c*(y)+6<0<y+4.
Since 0 <y + 6, 6(y) <. Thus 6(8) <a?(y). Hence
0<3+0a(8)<d+°(y),
contracting the assumption that a?(y)+ 8 <0.
LemMA 3.11. For I' a complete Boolean V-monoid, the restriction of o to

P+ (I) defines an order-reversing, sum-preserving bijection from P*(I') onto
N (D).

Proof. By (3.10), the restriction is an order-reversing bijection from
P*T(I') onto N~ ().
Say y<d in P*(I'). Then 6(6)<o(7) and hence (3.7) implies

y+6=9 and 6(y+8)=0(6)=0(y)+a(d).

COROLLARY 3.12. For a finite V-monoid I, there exists a unique non-
negative integer n such that I'=1T,.

Proof. Using (2.5), one verifies that " is Boolean. Hence /" is a com-
plete Boolean V-monoid. By (3.9),

r=~r(p+(r)=r,,

where |PT()j=n=|P*(I,)l

ExampLE 3.13. For [I" a nontrivial V-monoid and X'=1\{0, oo}, we
write

R(F)Z Z[Xy]}'627

where {X,},.r are indeterminates. For yeX and a monomial
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M=X, ---X, such that y; + --- +y,=17, we say M has degree y. Each
aeZ has degree 0. For yeI" =I'\{o0} we write R, for the Z-span of all
monomials of degree y (we are regarding 1 as a monomial of degree 0).
Writing R in lieu of R(I'), one checks that R=®,.,, R, and that
R.R, =R, ,Vy,ael". Finally, we write

A= Y R,

7EPT)

THEOREM 3.14. For a nontrivial V-monoid I’ such that either I s
Boolean or I'' is cancellative, A(I') is a CMC subring of R(I") with standard
V-monoid naturally isomorphic to I.

Proof. For a nonzero element r of R, write
r=r'/’l + Tt +r'l'n

where y;, < --- <y, and 0#r, eR, (i=1, ---,n). We refer to r,
initial component of r. Define v(r)=7y,. Define v(0) = co.
One checks that for r, se R,

as the

min{v(r), v(s)} < v{r +s).
Now suppose

09&r=r}’1+ e o £
Ofs=s, + - +5

X

In the cancellative case, one observes that the initial component of rs is
¥, 84, and hence, v(rs)=uv(r)+ v(s).

Hence we assume [ is Boolean. Without loss, by (3.7), we may assume
that y, +a, =7y,.

Case 1. y, <a,. Using (3.7), we see that for y,>7y,,y,+a #y,
(1 <j<n). Thus the y,-component of rs is

T, (2 va,->,

where we sum over all «, such that y, +a,=7,. As the rightmost factor is
a sum of nonzero components of distinct degrees, > s, #0. Hence
r, (X $,,) 1s nonzero and is the initial component of rs. Hence

v(rs)=v(r)+ v(s).

Case 2. a, <y,. This case is handled similarly to case 1.
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Case 3. o,=7,. When y,=0 the y, component of rs is r,s,. So
assume v, #0. By (2.5) the y,-component of rs is

r'Vl S“l + rYl (Z sal> + SD‘I <Z rV] )’

where the first sum is over all «; such that «; <a; and «;+ 7y, =7, and the
second sum is over all y; such that y, <7y, and y,+o;=«,.
We write B=2Z[X;]4.5, where

S={6eX|6#y,0+7 =11}

Write Y in lieu of X, . By Lemma 3.16 to follow, R, = YB[ Y]. One
checks, using (3.16), that —r, s, and r, (X s,)+5, (X r,) are in B[ Y],
and that (¥ s, ) and (¥ r, ) are in B. Hence, examining the degree in Y, we
see that

— S # rw<z S“,) + sm(Z r),j).
Thus, the initial component of rs has degree y,, that is,
o(rs) =v(r) + v(s).
Summarizing, v: R — I is a formally finite V-valuation with 4, = A(I).

LeMMA 3.15. For a Boolean V-monoid I', any positive integer n, and
Yis 25 ¥n in F>

nA A ERenty=n =L n)
Proof. One uses induction on .
LemMa 3.16. For a nontrivial Boolean V-monoid I" and 7€ I'\{0, o},
RszyZ[Xa]meAya
where A,={Bel\{0,0}|B+y=7}

Proof. This follows easily from (3.15).

ExampLE 3.17. For G a totally ordered abelian group and 4 a
V-monoid we define

GRA=GxA U {w),

where 4'=A\{c0} and + and < are defined as follows: addition on
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G x 4’ is component-wise and co is absorbent; oo is maximal and G x 4" is
ordered lexicographically. One checks that G ® 4 is a V-monoid.

Remark 3.18. For G and H totally ordered abelian groups and 4 a
V-monoid, one checks that

CGRIHRP®A)=(GxH)® 4,
1®4=4 and GR1I=1,

where G x H is the lexicographic product of G and H and 1 denotes the
trivial group.

Notation and Remarks 3.19. Recall that for a V-valuation v: R—» I we
write

A,={reR|0<u(r)}.

A, is a CMC subset of R. For I' nontrivial, we further define
P,={reR|0<u(r)}
and

I,={reRjv{r)=oc].

Notice that P,={reR|3se R\A,s.t. rse A, } and that I,=(4,:R)=
(P,:R) is a prime ideal of R. If 4, + 1, = 4,, then v naturally induces a
V-valuation

5:RII, > T

such that 4,=4,/I, and I,= {0}.

In the formally finite case, P, is precisely the set of zero divisors of the
A,module R/A4, and we always have A,+ I, S A,. Thus if I is realizable
as the target of a formally finite V-valuaton v, we may assume that the
source of v is an integral domain and that 7, = {0}.

THEOREM 3.20. Suppose w: R — A4 is a formally finite V-valuation of an
integral domain R such that I, = {0}. Suppose G is a totally ordered abelian
group. Then, there exists a formally finite V-valuation

v R(G) =GR A4,

where R(G) denotes the group ring of G over R.
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Proof. We may and shall assume G is nontrivial. Write
R(G)= @ co Rty For 0#x=3r,1, in R(G) let

Supp(x)={geG|r,#0}.
Define u: R(G) —» G by

min Supp(x) if x#0
”“_{w if x=0.
One checks that # is a formally finite V-valuation and that 4,/P,~ R.
Let w: A, — 4 be the canonical homomorphism 4, — 4,/P, followed by
w: R — 4, where we identify 4,/P, with R.
Define v: R(G) > G® 4 by

(u(x), w(t_ X)) if x#0
o

o) = if x=0

One checks that v is a formally finite V-valuation with image G ® 4.

DermniTIoN 3.21. We say a V-monoid I is divisible if for all ye I and
all ne N* =N\ {0},

nx=vy
has a solution in I

Remark 322. In a V-monoid I', a < f implies na <np for all ne N¥;
this follows from (2.5) and induction on #n. Hence in a divisible ¥-monoid,
for each ye I" and each neN, nx =y has a unique solution in I

DerFINITION 3.23. By a divisible hull of a V-monoid I” we mean a
pair (6, 4) where:
(i) 4 is a divisible V-monoid.
(11) 6:I'—~ 4 is an injective order-homomorphism such that 8(0) =0
and 6(oo) = o0.
(ili) For all € 4, 3n e N* such that nd € im 6.

THEOREM 3.24. Let I' be a V-monoid. There exists an essentially unique
divisible hull (0, D(I')) of T', where essentially unique means that if (i, 4) is
another divisible hull of I', then there exists a unique isomorphism
a: D(I') > A4 such that -0 =\.
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Proof. Define an equivalence relation on I"x N* by
(o, 1) ~ (B, m) <> mo=np.

Write a/n for the class of (a, n) and let D(J") denote the set of all such
equivalence classes.
Define

a/n+ B/m = (ma+nf)/nm.

One checks this is well-defined, associative, and commutative with 0/1 as
the zero element.
Define < on D(I') by

a/n < Bim < ma < np.

One checks that < is well-defined and that (D{I"), <) is a totally ordered
set with absorbent maximum oo/1. Finally, one checks that (D(I"), +, <}
is a V-monoid.

Define 0: I'-» D(I") by 6(y)=1y/1 for all yerI. 1t is clearly an order-
homomorphism and it is injective by (3.22).

Now suppose (i, 4) is another divisible hull of I. For a/ne D(I'), let
o(a/n) =3, where 6 € 4 is the unique solution to nx = y(a). One checks this
is well-defined and is an isomorphism of V-monoids. The uniqueness of o
is easily checked.

DEFINITION 3.25. Let 1" be a F-monoid.

If for all a, fe P (I"), 3 a positive integer # such that f<nx we say
P(I')y is Archimedean.

If for all o, fe N~ (1), 3 a positive integer # such that na<f we say
N(I') is Archimedean.

If P(I') and N(I") are Archimedean we say I is Archimedean.

THEOREM 3.26. Suppose I is an Archimedean V-monoid with a nontrivial
unit; let ael’ be a positive unit. Then, there exists an injective order~
homomorphism 6: " — R into the additive reals such that 6(a)=1. In
particular, I'' is cancellative.

Proof. For <o, let
Sg={mneQ|n>0, ma<np}.

One checks that S is a nonempty proper subset of Q and that if m/ne S,
and p/q <mj/n, then p/ge S;. Hence S, is bounded from above. Let

6(p)=sup S,.
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One checks that S; +S5,=S5;,,. Hence sup(S;+S,)<sup S;,,. Thus,
B(B)+60(y)<O(B+7y) for all B,yel".
Let

Ty={m/neQ|n>0,ma>np}.

Then Ty =Q\S;. One checks that inf T =sup Sj.

One checks that T+ T,= Ty, .. Thus inf T4, ,<inf(T;+ T, ). Hence
B(B+vy)<B(f)+6(y). Combining, we have 6(f+y)==06(f)+6(y) for ali
Byel.

Notice that So={m/mneQ|n>0,ma<0}={m/neQ|n>0,m<0}.
Hence 6(0)=0.

One checks that if f<y, then S; =S, and, consequently, 0(8) <8(y). If
B<y, then 3del” such that f+5<0<y+4. Since f+<0, Sz, ;<
N~(Q). Since 0<y+9,0/1€S,, ;. Hence 0(f) <0(y). Therefore, 0 is an
injective order-homomorphism.

We will find the following two results useful in the last section.

Lemma 3.27. Let I' be a V-monoid with a negative unit f§ and suppose
N(I') is Archimedean. Then, I' is Archimedean.

Proof. Let o= —f. Suppose 0<y<oo. Choose del such that
746 <0. Note that d<0. By hypothesis, there exists m>1 such that
mf<9d. Now y+mf <y+ <0 implies y +mf <0 and hence y <mo. Thus
for every ye P+ (I"), there exists m>1 such that y <mo.

Again, suppose 0 <vy<oco. Choose ¢ in I" such that e<0<y+e By
hypothesis, there exists # > 1 such that ne <. Now 0 <n(y+e)=ny+ne<
ny + f implies ¢ <ny. Thus for every ye P * (1) there exists n> | such that
a<ny.

Now suppose 0<7y,d<oo. Without loss, assume that y <d. Choose
m, n>=1 such that d <ma and a<ny. Then é <ma <mny. Hence P(I) is
Archimedean and, therefore, I' is Archimedean.

LEMMA 3.28. Let I' be a V-monoid with a negative unit B and suppose
that for each y € N (I) there exist positive integers m and n such that nf <y
and my < B. Then, I is Archimedean.

Proof. By (3.27) it suffices to show that N(I") is Archimedean. Suppose
7, 6€ N~ (I'). Without loss, assume that y < 6. Choose positive integers m
and » such that md < f and nf <+y. Then

nmé <nf <.

Hence N(I') is Archimedean.
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DEFINITION AND NOTATION 3.29. For a V-monoid I, let % (I") denote
the set of all convex submonoids of N(I"). One checks that % (I") is totally
ordered by inclusion. We define the rank of I as the order type of #({I).

THeOREM 3.30. A V-monoid I' has rank 1 < N(I') is Archimedean.

Proof. Assume that I’ has rank one. Then {0} < N(I') are the sole
convex submonoids of N(I"). Suppose o < ff <0 and suppose, to the con-
trary, that x <nfVan>1. Let K= {ye N(I') | 3n > 1 such that nf <y}. One
checks that K is a convex submonoid of N(I'). Since {0} = K< N(I'), this
is a contradiction.

Now assume that N(I") is Archimedean. Suppose {0} <K and K is a
convex submonoid of N(I'). Suppose, to the contrary, that there exists
ae N(I')\K. Choose <0 in K. Since K is convex we must have x < f. Let
n =1 be such that nf <o Then nfe K implies « € K, a contradiction.

4. CMC SUBRINGS

DEeriNtTIONS 4.1, We define a maxoid as a totally ordered commutative
monoid with an absorbent maximum, which we denote by cc.

We say a submonoid 4 of a maxoid I is convex if a <<y and a,ve 4
implies f e A.

Given any submonoid A of a maxoid I, let

U(A)={yel'|Jue 4 such that a <7}.

Notice that both U(A) and I"\U(A) are closed under addition.

ExaMpLE 4.2. For a maxoid 7, let K be a convex submonoid of N(I}.
Notice that U(K)= K+ P(I'). Define an equivalence relation on I by
a~f<= U(K):a=U(K):B.

Write [a] for the class of o and let I/K denote the set of all such
equivalence classes.

Define a commutative addition on I'/K by
lel+ [Bl=[a+B];

one checks this is well-defined and associative with [0] as its zero.
Define < on I'/K by

[a] <[Pl UKy a=s U(K): 5.
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One checks that (//K, <) is a totally ordered set with absorbent maxi-
mum [oo]. Finally, one verifies that (//K, +, <) is a V-monoid.

Let : I'— I'/K denote the canonical map. Then 7 is a surjective order-
homomorphism. Letting K(t)={ye | y<0, 1(y)=[0]}, one checks that
K(t)=K

Notation 4.3. For a surjective order-homomorphism of maxoids
o: [ — 4, we let

K(o)={yeI'|y<0,a(y)=0}.

THEOREM 4.4. Let I' be a maxoid, A a V-monoid, and let 6. ' — 4 be a
surjective order-homomorphism. Then, K(c) is a convex submonoid of N(I')
and there exists a unique map @: I'/K(c) — 4 such that pot=0 and ¢ is an
isomorphism of V-monoids.

Proof. Clearly, K(o) is a submonoid of N(I). Suppose o€ K(s) and
a<f<0. Then, 0 =0(a) < o(f)<06(0)=0 and, hence, o(f)=0. Thus K(a)
1s convex.

Define ¢: I'/K(c) > 4 by ¢([y]}=0(y). Let K= K(s) and notice that
ye U(K) < 0<a(y). To see ¢ is well-defined, suppose a(x) < o(f). Since ¢
is surjective, there exists y € I such that

o(a+y)=0(a)+o(y)<0<a(f)+o(y)=0(f+7)

Thus O0¢ U(K):a+7y, and 0e U(K): B+v. Hence [a]+[y1<[B]+[7]
and, consequently, [x] <[f]. Thus ¢ is well-defined. Clearly ¢ is the
unique map such that gpot=g0.

@ is a surjective order-homomorphism. One checks that K(¢)={[0]}.
By the following lemma ¢ is an isomorphism.

LemMma 4.5. Let o:I'> A be a surjective order-homomorphism of
V-monoids such that K(c)= {0}. Then, o is an isomorphism.

Proof. Suppose o(a)=0c(ff} in 4. We may and shall assume that a <8
in I'. Suppose, to the contrary, that « < f. Then, there exists y € I” such that
a+y<0<f+y. Thus o(a)+o(y)=c(x+y)<0<a(f+y)=0(B)+0a(y)
contradicting the assumption that o(a)=0c(f). Thus ¢ is injective and,
hence, is an isomorphism.

DEerFINITIONS 4.6. Let A = R be a CMC subring. We say a subring B of
R is an intermediate ring if A< B, Bis CMC in R, and

B:xcBy=>A:xcA:y Vx, ye R
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Let v: R— I be the standard V-valuation associated with 4. We say a
formally finite V-valuation w: R — 4 is composite with v if there exists an
order-homomorphism ¢: I"— 4 such that gov=w.

TueoreMm 4.7. Let v: R— 1T be a formally finite V-valuation and let
A=A,. There exists a bijective correspondence between the set of all inter-
mediate rings to A in R and the class of all isomorphism classes of formally
finite V-valuations composite with v.

Proof. Let B be intermediate to 4 in R. Let w: R — 4 be the standard
V-valuation associated with B. Define o: I'— 4 by o(v(r))=w(r) Vre R;
one checks that ¢ is a well-defined order-homomorphism using the assump-
tion that B is intermediate. Hence w is composite with v.

Suppose w: R— 4 is a formally finite V-valuation and o: "> 4 is an
order-homomorphism such that o¢-v=w. Letting B=A4,,, one checks that
B is intermediate to 4 in R. One checks that this depends only on the
isomorphism class of w and, finally, that these associations are inverse to
each other.

CoROLLARY 4.8. Let A be a CMC subring of a ring R and let v: R — I
be the corresponding V-valuation. Then, there exists a bijective corre-
spondence between the set of convex submonolids of N(I') and the set of all
rings intermediate to A in R given by K+ A, ., where T: I’ = I'/K is the
canonical map.

Proof. This follows from (4.7), (4.4), and (2.15).

DeriNITION 4.9. Let 4 be a subring of a ring R. We say an ideal P of
A is strongly prime in R if P< 4 and R\ P is closed under multiplication.

Notration and Remark 4.10. For A< R a CMC subring, let
P=Z(R/A) and I=(A4: R),
where Z(R/A) denotes the set of zero divisors of the A-module R/A.
Note that P is strongly prime in R. In addition, if v:R— 17 is the
standard V-valuation associated with A, then P={reR|0<wv(r)} and

I={reR|v(r)=oo}.
For B< R an intermediate ring, let

0 =Z(R/B).

Notice that @ is strongly prime in R and that I Q< P.
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Proof. The first containment is apparent. Suppose be Q; choose
s € R\B such that bse B. Since

B:sc BS B: bs

and B is intermediate, there exists a € R such that as ¢ 4 and abs e 4. Thus
beZ(R/4)=P.

LemMa 4.11. Suppose A is a proper CMC subring of a ring R and that
the A-ideal Q is strongly prime in R. Then, for each x € R either Q — A: x or
A:x<Q.

Proof. Suppose there exists be Q\(4 : x) for some xe R. Let ae (4 : x).
Now heQ and axe A implies baxe Q. Since bxe R\A<S R\Q and Q is
strongly prime, ae Q. Thus A:xcQ or Qc 4:x for all xe R.

LEmMmA 4.12. Let A and B be CMC subrings of a ring R such that A < B.
Then, B is intermediate to A in R if and only if for all se R\B and be B,
there exists ae R such that asé A and ab e A.

Proof. Suppose B is intermediate to A in R. Let se R\B and beB.
Then B:scB< B:b and hence A :s= A4 :b. Thus there exists ae R such
that as¢ 4 and ab e A.

Now assume that for all s ¢ B and b € B there exists a € R such that as¢ 4
and abe A. Suppose B:xc< B:y. Then there exists ue R such that ux¢ B
and uy € B. By hypothesis, there exists a € R such that aux ¢ A and auy € A.
Hence A:xc A4 :y.

Notation 4.13. Suppose 4 is a proper CMC subring of a ring R. Let Q
be a strongly prime A-ideal such that 7= Q < P. Define B(Q) and B<Q>
by

B(Q)={reR|Qcd:r}
and

B(Q)={reR|Q<A:r}.
We point out that B{Q > neced not be a subring of R.

LemMa 4.14.  Suppose A is a proper CMC subring of a ring R. Let Q be
a strongly prime A-ideal such that 1< Q <= P. Then, B(Q) is an intermediate
ring, Q is an ideal of B(Q), and Z(R/B(Q)) < Q. For C an intermediate ring
such that Q = Z(R/C), either C= B(Q) or C=B{Q).
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Proof. One checks, using the fact that Q is strongly prime in R, that
B= B(Q) is a subring of R.

Suppose r, se R\B. Then, by (4.11), A4:r<Q and 4:s5< (. Suppose
brseA. Then breA:s<=Q and r¢ Q implies be Q. Hence 4:r5<(Q, ie,
rse R\B. Thus B is CMC in R

Suppose se R\B and b¢ B. Then, by (4.11), A:s=QcA:b. Thus B is
intermediate to 4 in R by (4.12).

Suppose b € B(Q) and ae Q. Then Q = (4 : b*) implies ab’ € A and
a*b?e Q. Hence abe Q. Thus Q is an ideal of B(Q).

Suppose s € R\B and bse B. Then, 4:5 < Q = 4 :bs. Choose
ae(A:bs)\Q. Then abse A implies abe Q. Since a¢ @ and Q is strongly
prime, be Q. Thus Z(R/B)< Q.

Let C be an intermediate ring such that Q = Z(R/C). Suppose < A4 : r.
Let ae (4 :r)\Q. Then are C and a ¢ Z(R/C) implies r e C. Thus B(Q)< C.
Now Q is a C-ideal implies Q= A :cVee C. Thus C< B{Q ). Suppose
B(Q)<=C. Then there exists ¢ce C such that Q = (4 :¢). Since C is inter-
mediate, C must contain each element y of R such that 4:y=0, ie,

C=BL{Q).

THEOREM 4.15. Let A be a proper CMC subring of a ring R.

(i) For Bc R intermediate to 4 in R and O = Z(R/B), Q is strongly
prime in R and I Q<= P. If Q#A4:rVreR and there exists b @ such
that 4 :b< A : ¢ VceQ, then there exists xe Rsuch that A : xc Q< A4 : bx.

(ii) Suppose the A4-ideal Q is strongly prime in R and /€ Q< P.

Case (a). Suppose that Q#(A:r)VreR dbeQ such that
A:bsA:cVeceQ, and Vxe R either Q= A4 :x or 4:bx<=0Q. Then, there
does not exist an intermediate ring B such that Z(R/B)= Q.

Case (b). Suppose that Q+# (4 :r)V¥re R and if there exists be @
such that 4:b=A:cVceQ, then 3xe R such that A:xcQc 4 :bx.
Then B(Q) is the unique intermediate ring B such that Z{R/B)= Q.

Case (c). Suppose that Q=(4:r) for some reR, and Qy € Q
some ) such that Q=4 :y Then, B(Q) is the unique intermediate ring B
such that Z(R/B)= Q.

Case (d). Suppose that Q=(A4 :r) for some re R, Qy = Q Vy such
that Q=A4:y,3beQ such that A:b<A:cV¥ceQ, and VxeR ceither
Q< A:xor A:bxc Q. Then, B(Q) is the unique intermediate ring B such
that Z(R/B)= Q.

Case (¢). Suppose that Q= (A4 :r) for some re R, Qy < Q Vy such
that =4 :yp, and if 3be Q such that 4 : b= A : cVce O, then Ixe R such
that 4 :x< Q@ < A4 :bx. Then there are precisely two intermediate rings B
with Z(R/B)= @, namely, B(Q) and B{Q>.
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Moreover, for any strongly prime A4-ideal Q such that /< Q < P, exactly
one of the above cases holds.

Proof.

(i) We already observed that Q is strongly prime and /= Q< P.
Suppose Q#A4:r¥reR and there exists beQ such that 4:bC
A:cVceQ. Since B is intermediate, B:b< B:cVceQ as in the proof
of (4.7). As be Q=Z(R/B), there exists xe& R\B such that bxe B. Since
x¢B, A: xS B:x< Q. Since bxe B and Q is a B-ideal that is contained
in 4, Q< A4 :bx. Thus 4:x< Q<A :bx by our hypotheses.

(ii) Now suppose Q is a strongly prime A-ideal and I Q< P.
Case (a). This follows directly from (i).

Case (b). Let be Q. Suppose there exists ce C such that A:c< A4 :b.
Choose ze(A4:b)\(4:c). Since cz¢ A and QB(Q)<=Q, z¢ B(Q). Thus
be Z(R/B(Q)). Now suppose A:b=A:cVeeQ. Let x be such that
A:xcQcA:bx. Then x¢ B(Q) and bxe B(Q) implies be Z(R/B(Q)).
Thus Q € Z(R/B(Q)). By (4.14), B(Q) is an intermediate ring such that
Q = Z(R/B(Q}). By the case assumption, B(Q)= B{Q ), so it is the unique
intermediate ring B with Q = Z(R/B) by (4.14).

Case (c). Q=(A4:r) implies Q< Z(R/B(Q)) and hence B(Q) is an
intermediate ring with Q = Z(R/B(Q)). Since Qy & Q for some y such that
A:y=0, Q is not an ideal of B{Q ) and consequently B{Q) is not an
intermediate ring B such that Q=Z(R/B). The conclusion follows from
(4.14).

Case (d). As in (c), B(Q) is an intermediate ring with Q = Z(R/B(Q)).
Let beQ be such that A:b=A:cVceQ. Since either Q< A:x or
A:bxcQfor all xeR, b is not a zero divisor for B{Q>. Thus B(Q) is the
-unique intermediate ring B such that Z(R/B)= Q.

Case (¢). Since Oy < Q for all y such that Q=(4:y), B{Q) is a sub-
ring of R and Q is an ideal of B{Q). One further checks that B{Q is an
intermediate ring. Suppose se€ R\B{Q > and bse B{Q). Then 4:5c Q.
Choose ae Q\(A :s). Since QB{Q)> =0, abse Q. Since ase R\A< R\O,
be Q. Thus Z(R/B{Q>)<= Q. Let be Q. Suppose there exists ce Q such
that 4 :cc A4 :5b. Choose xe(A4:b)\(4:c¢). Then bxe 4 and Q £ (A : x)
implies be Z(R/B{Q)). Now suppose A4:b<= A4 :c for all ce Q. Let x be
such that A:xcQ<Ad:bx. Then x¢B{Q)> and bxeB{Q@). Thus
be Z(R/B{Q>). So B{Q) is an intermediate ring with Z(R/B{Q>)= Q.
As in (4.14), these are the only possibilities.
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DEerINITIONS 4.16.  We say a proper CMC subring 4 of a ring R is mini-
mal if there does not exist a CMC subring B of R such that Bc 4.

Let f: Z — R be the canonical homomorphism. R is said to be absolutely
integral if f(Z)< R is an integral extension.

By an algebraic number field we mean an algebraic extension of Q.

Remark 4.17. For any proper CMC subring 4 of a ring R, there exists
a minimal CMC subring B of R such that B< A. This follows directly from
Zorn’s lemma.

LemMma 4.18. A ring R has no proper CMC subrings < R is absolutely
integral.

Proof. Suppose R has no proper CMC subrings. As the integral closure
of f(Z) in R is the intersection of all CMC subrings of R
([7, Théoréme 81]), R is absolutely integral.

Assume that R is absolutely integral. As every CMC subring of R is
integrally closed in R [7, Théoréme 1], R has no proper CMC subrings.

LemMa 419, Let A be an integral domain. Then, A is absolurely
integral <> A is either a locally finite field or is isomorphic to a subring of
the ring of integers in an algebraic number field.

Proof. Assume that A is absolutely integral.

Case (a). Suppose that char A=p>0. Let F=Z/pZ and identify F
with its image in A. Then Fc 4 is an integral extension of domains
implies 4 is a locally finite field.

Case (b). Suppose char 4 = 0. Identifying Z with its image in 4, Z < 4
is an integral extension of domains. Letting K denote the quotient field of
A, Q< K is an algebraic extension of fields, i.e., K is a number field. Let ¢
denote the ring of integers in K. Then A = ¢ since ¢ is integrally closed
in K.

Now assume that either A4 is a locally finite field or is isomorphic to the
ring of integers in an algebraic number field. One checks that A4 is
absolutely integral.

THEOREM 4.20. Let A be a proper CMC subring of a ring R and let A
denote A/P, where P=Z(R/A). Then, A is minimal = A is either a locally
[inite field or is isomorphic to a subring of the ring of integers in an algebraic
number field.

Proof. Suppose A is minimal. Then 4 has no proper CMC subrings.
For if B is a proper CMC subring of 4 and g: 4 —» A is the canonical
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homomorphism, then g~ '(B) is a CMC subring of R by Lemma 4.21 to
follow. Thus A is either a locally finite field or is isomorphic to a subring
of the ring of integers in an algebraic number field by (4.17) and (4.18).

Lemma 4.21. Let A be a proper CMC subring of a ring R, let
P=Z(R/A), and let B be a CMC subring of A. If P< B, then B is CMC
in R

Proof. Suppose P=B. Let r, se R\B. Without loss, we may assume
that either r, se R\A or r,se A\B or re R\A,se A\B. Il r, s R\A, then
rse RRA< R\B. If rse A\B, then rse AAB< R\B. Suppose re R\A and
se A\B. Since s¢ Z(R/A)=P, rse R\A < R\B. Thus B is CMC in R.

5. NUMBER RINGS

For background material on absolute values of number fields, the reader
is referred to the lecture notes of E. Artin [1].

DeriNITION 5.1. We call a ring a number ring if for every proper CMC
subring 4 of R, A/P is a locally finite field, where P= Z(R/A).

Remark 5.2. Tt is well known that an algebraic number field (ie., an
algebraic extension of Q) is an example of a number ring.

THEOREM 5.3. Let v be a formally infinite V-valuation of a number
ring R. Then, there exists a ring homomorphism - R— C such that v is
isomorphic to w, where w(r)=|f(r)| for all re R.

Proof. Let I be the target of v, let ¢ be a unit of R satisfying (2.10b),
and let a=o(¢). Since min{v(1), v(0)} =0<v(1+0)+v(r)=v(¢) and v is
formally infinite, o is a positive unit of I". Let f= —« and let

K={yeN(I)|3n>1 such that nf <y}.
One checks that K is a convex submonoid of N(I') and that fe K.

Let v: I' > I'/K be the canonical map. Then, 7(f)=0 and, consequently,
t(a2)=0. Write # = 7ov. One checks that

min{&(r), 5(s)) <o(r+5) Vr,s€R.

Thus 7 is a formally finite V-valuation on R Let A =A4,.
We claim that 4=R. Suppose, to the contrary, that 4 = R and let
P=P; Let s=t". Since v(s)=f and #(s) =1(f)=0, s A\P. Since R is a
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number ring and A< R is a CMC subring, 4/P is a locally finite field.
Hence there exists an integer 7 = 2 such that 5" =1 + p for some pe P. Now

v(s"y=nv(s)=nf<p,
since f is a negative unit in I". On the other hand,
O=min{p(1), o(p)} <v(l +p)+a,
which implies

p<o(t+p)=uv(s")=np,

a contradiction. Thus 4=R and consequently, K=N(I') by (2.15)
and (4.2).

We recall that since r satisfies (2.10b), for all y <0 in I" there exists a
positive integer n such that sy <f. Combining this with the fact that
K=N(I'} we deduce that N(I') is Archimedean by (3.28). Hence I is
Archimedean by (3.27). By (3.26) there exists an injective order-
homomorphism o: I"—» R with a(p(1))=1. Let 4=0{I").

Write u=06ov: R— A. Then u(t)=1 satisfies (2.10b). Notice that v and
u are isomorphic; in particular, u is formally infinite. Consider P(R) as a
V-monoid where the binary operation is multiplication and the order is the
dual of the usual order on P(R). Then,

R, — P(R)

defined by 5(x)=2"" is an isomorphism of V-monoids. Let 4 =n(4) and
let w=pnou. Notice that w is isomorphic to v and hence w is formally
infinite.
One checks that:
(1) wlrs)=w(r) w(s) Vr,seR.
(i) w(r)=0<v(r)=0oc YreR.
(i) w(r+s)<2max{w(r), w(s)} Vr,seR.
By Lemma 5.4 to follow, we see that w satisfies
(i) w(r+s)<w(r)+w(s) Vr,seR.

Also notice that 1 =w(1)=w((— 1)*)=w(—1)? implies w(—1)=1.

Let I=1, = {reR|v(r)=o0}. Recall that I is a prime ideal of R. Write
F for the quotient field of R/I. Notice that w(r+x)=w(r) for all
re R, xel Thus w induces a map

p: R/I—- P(R),

481 126.2-3
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given by p(¥)=w(r)Vre R. Extend p to F by
p(F/5)=w(r)/w(s)  VreR,seR\L

One checks that p is well-defined and that p satisfies:

(1) plxy)=p(x)p(y) Vx,peF.
(i) p(x)=0<=x=0 VxeF.

(i) plx+y)<p(x)+p(y) Vx,yeF

Thus p is a classical absolute value on the field F. One checks that since
w is a formally infinite V-valuation, p is Archimedean in the sense of
Cassels and Frohlich [3]. By the Gelfand-Tornheim theorem [3, p. 45]
there exists an injective homomorphism

mF-C
such that

p(x)=|r(x)]  VxeF.

Let f: R — C denote moiog, where g: R— R/I is the canonical map, and

i: R/I - F is the inclusion. Then f(r) =n(#/1) and hence
w(r) = p(F/1) = |1(r)l.
LeMMA 5.4. Let R be a ring and suppose w. R — P(R) satisfies:

(a) w(rsy=w(r)w(s) Vr,se R.
(b)  w(r+s)<2max{w(r), w(s)} Yr,se R.

Then, w satisfies
() w(r+s)<w(r)+w(s) Vr,seR.

Proof. By (b) and induction, for all m>1,/=2", and r,,---,r; in R,

wir,+ - + r,)glmax{w(ri)}-

Given n > 1, choose m such that 2™ ! < n < 2™ Notice that 2 < 2n. Now
wiri+ - +r,)=wirj+ - +r,+0+ --- +0)
< 2" max{w(r;)}

< 2nmax{w(r;)}.
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Thus, foralln>=1and ry,---,r, in R,
w(ry 4+ - +r,)<2nmax{w(r,)}.
In particular, for all n>1 and r,,---,r, in R,
wlry+ - +r,)<2nlw(r )+ - +w(r,)]
Let r,se R. Then

w(r+s)1"=w([r+s1")

n
n o
=w(z ( r”"s’\)
i
H

i—0

Thus

[w(r+s)1"<4(n+ Diw(r) +w(s)]"  Vnz1,

and hence

wr +5) <4 (n+ DY [w(r)+w(s)] VexL

Letting n — oo, we deduce that

w(r+s)<w(r)+w(s)  Vr,seR
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Notation 5.5. For R a ring, we write X(R) for the set of all proper
CMC subsets of R, X,(R) for the set of all proper CMC subrings of R, and
let X, (R)=X(R\Xy(R). For 4e X(R), we write v, for the standard

V-valuation associated with 4.

THEOREM 5.6. Let R be a field. Then, R is a finite dimensional number

field if and only if the following five conditions hold-

(i) For all 4e X(R), the ¢ of Definition 2.13 may be chosen such

that either t=1 or 2r=1.
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(ii) X (R) is nonempty and finite and X, (R) is infinite.

(ili) For all nonzero re R, {4e X(R) | v,(r)#0} is finite.

(iv) For all nonzero reR,v,(r)=0 VA€ X(R)<I0#necN with
r'=1

(v) For distinct elements 4,, .., 4, in X(R), Ire R with r¢ 4, and
red,n -~ N A,.

Proof. First we assume R is a finite dimensional number field. The
proper CMC subsets of R correspond bijectively to the usual primes of R,
the nonrings corresponding to the real and complex primes, and the CMC
subrings corresponding to the proper Krull valuation subrings. This
follows from Theorem 5.3 and a tedious, but straightforward, check; in
particular, one verifies that noncomplex conjugate embeddings of R into C
give rise to distinct CMC subsets of R. With this observation, (i)—(v)
follow from well-known results (e.g., see p. 60 of [3] for (iii), p. 164 of [1]
for (iv), and p. 39 of [1] for (v)).

Conversely, assume (i)-(v) hold for the field R. By (ii) and Theorem 5.3,
the characteristic of R is 0. By p. 111 of [8], R is an algebraic extension
of Q (here one uses (v) to check that the topological space X,(R) is T, ).
All that remains is to show that R is finite dimensional. Using (i), we see
that for any finite dimensional subfield F of R and any 4 in X _(R), AnF
is a CMC subset of F. By (5.3), AnFcFand 2¢ AnF. Hence AN F is
in X (F).

Let n denote the number of elements in X' (R). Let F be a finite dimen-
sional subfield of R, let s denote the number of real primes of F, and let ¢
denotes the number of complex primes of F. Then, dim F=s+2r<
2(s+ t) < 2n. Hence R is finite dimensional.
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