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Abstract

Assume that the differential operatetDpD + ¢ in L2(0,00) has 0 as a regular point and that the
limit-point case prevails ato. If p =1 andq satisfies some smoothness conditions, it was proved
by Gelfand and Levitan that the spectral functiang) for the Sturm-Liouville operator corre-
sponding to the boundary conditioiigu’)(0) = tu(0), T € R, satisfy the integrability condition
fR do(t)/(]t] + 1) < oo. The boundary condition(0) = 0 is exceptional, since the corresponding
spectral function does not satisfy such an integrability condition. In fact, this situation gives an exam-
ple of a differential operator for which one can construct an analog of the Friedrichs extension, even
though the underlying minimal operator is not semibounded. In the present paper it is shown with
simple arguments and under mild conditions on the coefficigpraadg, including the case =1,
that there exists an analog of the Friedrichs extension for nonsemibounded second order differential
operators of the form-DpD + ¢ by establishing the above mentioned integrability conditions for
the underlying spectral functions.
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1. Introduction

Consider the singular Sturm—Liouville operateD? + ¢ on the halfling[0, co). As-
sume that the real-valued functignis locally integrable and assume that the limit-point
case prevails ato, so that the differential operaterD? + ¢ in L?(0, co) with the boundary
conditions

uQ)=u'(0)=0

is densely defined and symmetric with defect numbers (1.1). Its self-adjoint extensions
A(1), T € RU {00}, in L2(0, o0) correspond to the boundary conditions

W' (0)=tu(0), teRU{0}. (1.1)

When properly interpreted, the self-adjoint extensiags) in (1.1) witht € R behave like
rank one perturbations of the extensiaf0) while the extensiom (co) can be obtained
via a completion procedure from the corresponding minimal operator, which need not be
semibounded. In particular, for atl € R the domains dor (t)|Y/2 coincide with each
others and the completion of the domain of the minimal operator with respect to the form
generated by the moduliis (¢)| (or with respect to the graph topology |of(7)|*/? which
is independent of € R) produces the domain dof(c0)|Y2 as a one-dimensional re-
striction of dom A(7)|Y/2. Due to the analogy with the case where the minimal operator is
semibounded, the self-adjoint extensiétoo) is called the generalized Friedrichs exten-
sion. Since the minimal operator need not be semibounded (for an example, see [17, 4.14]),
the usual Friedrichs extension need not exist, but if it exists, it coincides with the general-
ized Friedrichs extensioA(oco) (see [1], and [2] for extension). These facts follow from
the results proved in [11,12] in an abstract setting. It is emphasized that there are differen-
tial operators for which one cannot construct an analog of the Friedrichs extension, cf. [12].
Therefore, it is of particular interest to find conditions or criteria which guarantee the ex-
istence of the generalized Friedrichs extension for nonsemibounded differential operators.
Denote the Titchmarsh—Weyl coefficients corresponding to the self-adjoint extensions
A(t) by m;(z). The facts presented above can be seen as consequences of some analytical
properties of the functions. (z), t € R U {oo}. If the corresponding spectral functions are
denoted by (¢), then

do (1) do(t)
=— R 1.2
m(2) ‘L’—i—/ —z' |t|+1<0011'€ ) (1.2)

R

R
and
@) +/ L Vo
= — o2 ,
elc t—z 2+1)° 7
R
d do, (t
aeR,/ UT(I)<oo, GT()zoo,rzoo. (1.3)
t2+1 1| +1
R

R
The observation that the Titchmarsh—Weyl coefficientgz) satisfy (1.2) goes back to

Gelfand and Levitan [9], under certain smoothness conditiong. dviore general state-
ments with weaker smoothness conditions;care due to Hille [14, Theorem 10.2.4] and
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Levitan and Sargsjan [15, Theorem 5.2]. The proofs of Gelfand, Levitan, and Sargsjan
are based on an integral representation of the resolvent operator, which involves the corre-
sponding generalized Fourier transforms. The proof of Hille is more direct as it uses Weyl's
original limit-point, limit-circle construction, see [4,7,17,18]. That is, the Titchmarsh—\Wey!I
coefficientm,(z) is the limit of m (b, z) asb — oo, whenm (b, z) is the Titchmarsh—
Weyl coefficient of— D? + ¢ on the interva[0, 5] with the boundary conditions (1.1) and
u(b) = 0. In this sense the generalized Friedrichs extensiof0oto) can be seen to be
the limit of Friedrichs extensions 4, b] asb — oo. The details of Hille’s proof are quite
technical. An attempt at simplification of them is due to Wray [19].

The purpose of the present paper is to show the existence of the generalized Friedrichs
extension for nonsemibounded second order differential operators of the-foywD + ¢
by establishing the above mentioned integrability conditions for the underlying spectral
functions (cf. [12]) under mild conditions on the coefficiept@andq. This involves, in
particular, a coherent treatment of the problem in the context of Nevanlinna functions, i.e.,
analytic functions with positive imaginary part in the upper half-plane, cf. [8]. The ap-
proximation of the singular problem ¢, oco) by regular problems of0, 4] is successful,
due to a uniform bound given by Hille [14, Theorem 10.2.1]. This uniform bound for the
Titchmarsh—Weyl functions of®, »], » > 0, gives a justification for the convergence of the
corresponding spectral functions.

In this paper the general Sturm—-Liouville operateDpD + g is considered in
L2(0, 00), with 1/p andg being locally integrable ofi0, c0). Then 0 is a regular point
and it is assumed that the limit-point case prevailscatUnder mild conditions om it is
proved, in an elementary manner, that the spectral functions corresponding to the bound-
ary conditiong pu’)(0) = tu(0), T € R, behave as in (1.2) and that the boundary condition
1(0) = 0 corresponds to the generalized Friedrichs extension in the sense of [12]. The re-
sults in the present paper can be extended to the case of Sturm—-Liouville operators whose
coefficients depend rationally on the eigenvalue parameter, cf. [3].

2. Convergence of Nevanlinna functions

A function Q(z) : C\ R — C is said to belong to the cladséof Nevanlinna functions if
Q(z) is holomorphic,Q(z) = Q(z), and(Imz)(Im Q(z)) > 0 for all z € C \ R. A function
Q(z) belongs taN if and only if

1 t
Q(Z)=a+ﬁz+/(:—m> do (1), (21)
R
where
do(t)
aeR, B =0, /t2+1<oo, (2.2)
R

ando (1) is a nondecreasing function, see [8]. It is always assumed that the fuactiois
normalized such that(¢) = (o (t + 0) + o (t — 0))/2 ando (0) = 0; in this case the above
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correspondence is one-to-one. I@tz) € N and define the functio®, (z), T € R U {o0},
as a fractional linear transform @f(z) by

0@ —rt
1+70(z)°

Clearly, 0. (z) belongs toN for all r € R U {oo}. The subclassl,, 0 < n < 1, consists of
those functiong) (z) € N which satisfy the additional asymptotic condition

0:(2) = T e RU{oco}. (2.3)

o]

/ ImQ(y) dy < 00

y’?
1

It follows from this condition thag = 0 in (2.1). In fact, a functiorQ(z) belongs taN,, if
and only if

mm=y+/ddﬂ, (2.4)
t—z
R
where
yeR, do (1)

— <
[t]"+1
R

Herey =lim,_, o Q(iy) € R. The subclasklg consists of those function@(z) € N which
satisfy

supyIm Q(iy) < oo.
y>0

ClearlyNg € N,,, 0 < 5 < 1. A function Q(z) belongs taNp if and only if Q(z) has the
integral representation (2.4) with

y € R, /dcr(t)<oo.
R
If Q(z) eN,, 0< <1, andlim_ Q(iy) =0, thenQ.(z) in (2.3) belongs tiN,, for all
7 € R, while Qo (z) € N\ Ny, cf. [12]. The subclashl; goes back to Kac.
There is a natural topology fdd, namely the topology of uniform convergence on
compact subsets @ \ R. ThenN is a complete metric space, see [8, p. 32]. The following
result is standard; for a proof see [6].

Proposition 2.1.Let 0, (z) € N, n € N, have the integral representation
1 t
On(2) =ay + Buz +/(: - m) doy(t)
R
with

doy, (1)
anER, ﬁn>0, /m<00,
R
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and letQ(z) € N have the integral representatiq@.1) with (2.2). ThenQ,,(z) converges
to Q(z) in the sense d\l if and only if forn — oo,

an_>as ,Bn_>,31 Un(t)—>0(t),

where the last limit takes place at the continuity points ¢f).
An analog of Proposition 2.1 for the subcla$sreads as follows.

Corollary 2.1. Assume thad < n < 1. Let Q,,(z) € N,, n € N, have the integral represen-
tation

doy (1)
0n(2) =¥ +/ 2 ,

r—z
R

wherey, € R and [ do,(1)/(]t]" + 1) < oo, and letQ(z) € N,, have the integral repre-
sentation(2.4)with y € R and [R do(t)/(Jt|" + 1) < c0. ThenQ,(z) converges tad(z)
in the sense dfl if and only if

Yn =V, on(t) = o (1),

where the last limit takes place at the continuity points ¢@f).

Proof. The weak convergence of the spectral measdsgsmplies

t t
Oln—Vnzfmdffn(t)*/mda(t)zot—y_
R R

Now, clearlya,, — « is equivalenttoy, — y. O

The convergence properties in Proposition 2.1 and its corollary may be augmented by
means of the following compactness criterion, see [8].

Proposition 2.2.Let P be an infinite family of functions iN such that for someg € C\ R
there is a constan¥ such tha Q(zo)| < M for all Q(z) € P. Then there is a sequence in
P which is convergent.

In particular, if a sequence of Nevanlinna functiofg(z) converges at some point
z0 € C \ R, then there is a subsequence @f(z) which converges in the sense Nf
Moreover, if the Nevanlinna function@, (z) converge pointwise for eache C \ R to
a functionQ(z), thenQ(z) is a Nevanlinna function and the convergence is in the sense
of N. The next result deals with the convergence of function$,jn0 < n < 1.

Proposition 2.3.Let 0, (z),n € N, belong toN and assume tha®,, (z) - Q(z) asn — oo
forall z e C\ R. If, for 0 < n < 1, there is a constarW such that for allz € N,

]

/'m 0, (iy) dy <N, (2.5)
yn
1
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then

/ MOy 4y < n (2.6)
y’?

1

and Q(z) € N,,. Moreover, if there is a constat¥ such that for allz € N,
supy Im Q,(iy) <N, (2.7)
y>0

then
supy Im Q(iy) <N (2.8)
y>0

and Q(z) € Ng. The same assertions are also true whenQ,, in (2.5), (2.7)andIm Q
in (2.6), (2.8)are replaced byQ, | and|Q|, respectively.

Proof. By assumptions, the function, (z) tend toQ(z) in the sense o, so thatQ(z)
€ N and the convergence is uniform on compact subsets. This together with (2.5) implies
that for eachk > 1,
R . R .
/ ImQ(iy) dy = lim / Im 0, (iy) dy < N.
y'l n—o00 y'l

1 1
Now letting R — oo one obtains (2.6) by the monotone convergence theorem. In particular,
Q(z) € N,,. The assertion that conditions (2.7) imply (2.8) afdz) € Ng is now also
obvious. The proofs with In®, and ImQ replaced by their absolute valugg, | and|Q|
are similar. O

Assume that & n < 1. With the notations from Corollary 2.1 the conditions in Propo-
sition 2.3 are equivalent to

)~ o) don®)
—> —> S
Vn 7/1 Gn (o} ’ |t|77 + 1
R

The conclusion is then equivalent to

do (1)

e +1

R

This resembles the approach of [19]. In the present approach the conditions concerning the
growth of the spectral functions are more general.

3. Some estimates for Sturm—Liouville operators

Let p andg be complex-valued functions d@, co) such that 1p andg are locally
integrable. Letx(z) andB(z) be (locally) holomorphic functions o@ \ R. Consider the
solutionu(-, z) of the initial value problem

—(pu")' +(q —2u=0, u(0,2) = a(z), (pu")(0,2) = B(2). (3.1)
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Clearly, the unigue solution of the following “unperturbed equation:”

—(pu')' =0, u(0,2) =a(2), (pu')(0,2) = B(2), (3.2)
is given by
a2+ p@)Px), Pkx)= idt. (3.3)
" p(t)

As to (3.1), integration gives
(pu')(x,2) = B(2) +/(q(t) —Z)u(t, 2)dt,
0

and a further integration leads to the following integral equation for the solution of the
“perturbed equation” (3.1):

X t

M(X,Z)=01(Z)+,3(Z)P(X)+/pTlt)</(q(s)—z)u(s,z)ds> dt. (3.4)
0 0

Conversely, the solution of (3.4) satisfies (3.1). Define the functi@ssPy, and Py by

x x i x .
= dt, P = s P = dt. 3.5
Qo(x) O/|q(f)| t 0(x) 0/|P(f)| 1(x) 0/|P(f)| t (3.5)

Clearly, these functions are real-valued, continuous, and nondecreasiityaan and
00(0) = Py(0) = P1(0) = 0. In the following, the functior stands for (r) = te, so that
alsoV is real-valued, continuous, and monotonically increasinglono) with ¥ (0) = 0.
The next lemma gives an estimate for the difference of the solutionz) in (3.1) and
solution (3.3) of the unperturbed equation (3.2).

Lemma 3.1.Letu(., z) be the solution of3.1). Then for allx € [0, co) andz € C\ R,

|u(x,2) —a(z) = B(2) P(x)|

Qo®) + Izl dt). (3.6)

< (le@] + [B@)|Pox)) (0 Ip(®)]

Proof. Let M(z, z) = maxpgs<s lu(s, z)|. Then it follows from (3.4) and (3.5) that

[ Qo) + 2t

|M(x,z)|<|a(z)|+|ﬂ(z)|Po(x)+ (t,z)dt.
[p(®)]
Therefore, also
M(x,2) < \Ol(z)|+\ﬁ(z)\Po(x)+/%M(t,z)dt. (3.7)
0
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Inequality (3.7) can be solved in the usual manner by applying Gronwall's lemma, see [14].
In fact, for eachy € C \ R the function|a(z)| + |8(z)| Po(x) is nondecreasing, and there-
fore (3.7) leads to

(3.8)

x Qo) +1al .\
@]

Mx,2) < (le@)| + |B@)| Pox)) exp(
0

Now, from (3.4) and (3.8) one obtains

lu(x,2) —a(z) — BP@)| < (Ja2)| + |,8(z)|Po(x))lI/</ %dr),
0

which proves the statement
For each; € C \ R the values of the functiow in Lemma 3.1 can be made arbitrarily
small whenx is restricted to a sufficiently small intervgd, 5(z)]. It will be enough to

define such intervals far=iy, y > 0. One selection is presented in the next lemma.

Lemma 3.2.For eachO < ¢g < 1 there existyg > 0 and a monotonically decreasing func-
tion & : [yo, 00) — (0, 1) such that fory — oo,

(i) 8(y) =0,
(i) yd(y) — oo,

and for all y > yg andx € [0, §(y)],

wf (L9 <o (3.9)
|p(0)]
0
Consequently,
lu(x,iy) — a(iy) — Biy) P(x)| < co(|a(iy)| + | B(iy)| Po(x)). (3.10)

Proof. Let 0 < ¢g < 1 and letdp be the unique positive number such tiatdo) = co.
Then there exists; > 0 such that

8(y)

/ Qo(r) + yt

dt = d, 3.11
P TP (3.11)

uniquely determines a functidy) on[y1, o), which is monotonically decreasing. Using
P1(x) defined in (3.5), identity (3.11) gives
3(y)

Qo(r)
Pi(s =dop— dt < dp. 3.12
yP1(8(y)) =do / 0| t < do (3.12)
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This implies that(y) — 0 asy — oo, and thus proves (i). Now, the integral term in (3.12)
can be made smaller thaiy/2 when, sayy > y> > yi1. Therefore, fory > y» one has
yP1(3(y)) = do/2 and

1 _2P60) _2

y8(y) “do 8(y)  do
which shows (ii). Finally, choosgg > y> such thats(yp) < 1. Clearly, fory > yg esti-
mate (3.9) is satisfied, and thus, by Lemma 3.1 inequality (3.10) holds for everyg
and 0<x <é8(y). O

Po(é(y)) -0, y— o0,

Lemma 3.3.Letu(-, z) be the solution of3.1). Choosé < ¢p < 1andlets(y) : [yo, c0) —
(0,1) be a function as in Lemn&a2

(i) Then fory > yg andb > 1,

b
/ lutt, iy)[>di > (1 - c0)25(y)|aliy)|?
0

8(y)
-2+ ?lainpan)| [ poor
0
(i) If, in addition, p > 0in a neighborhood of 0, then far> yg andb > 1,

b 8(y)
/|u(r,iy>|2dt>(1—co)2<5(y)|a(iy)|2+|ﬂ(iy)|2/ Po(t)zdt)
0

0
3(y)
-2+ c?lainpan)| [ poor
0

Proof. Lets(y) be a function with the properties in Lemma 3.2. It follows from (3.10) that
there are complex numbegs (= ¢1(x, y)) andéz (= ¢2(x, y)) with [£1], [¢2] < co, such
that for ally > yp and 0< x < 8(y),

u(x,iy) = a(iy)(L+ 1) + B(iy) (P(x) + C2Po(x)).
The triangle inequality implies
(e, i9)])? > (1= co)?|aiy)| — 21+ co)?|liv) B(iy) | Po(x)
+|BGiy) (P(x) + ¢2Po(x)) > (3.13)

To obtain estimate (i) delete the last term in the right-hand side of (3.13), integrate both
sides of the resulting inequality from 0 &@¢y), and then usé(y) <d8(yo) <1 <b.
If p>0,thenP(x) = Po(x) and the following inequality holds:

| P(x) 4+ £2Po(x)| = |(1+4 ¢2) Po(x)| = (1 — co) Po(x).
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Estimate (ii) is now obtained by substituting the previous estimate into (3.13), integrating
both sides of the resulting inequality from 0 &¢y), and finally usings(y) < 8(yo) <
1<b. O

4. Titchmarsh—Weyl coefficients
Let p andq be real-valued functions on the intenj@l co) such that 1p andg are
locally integrable. The eigenvalue problem
(=DpD +q)u=zu (4.1)

has two linearly independent solutiomg-, z) andu2(-, z), entire inz, satisfying the initial
conditions

u1(0,2)=1, (pup)(0,2)=0, u2(0,2)=0, (pu5)(0,z)=-1.
Define the meromorphic function(b, z) by

uz(b,
m(b,z) = —Mib’ 2
Then the functiorny, (-, z) defined by
xb (-, 2) =m(b, D)ui(:, 2) + u2(-, 2) (4.2)
satisfies the boundary conditions
xwb,2)=0,  xp(0,2)=m(b,2),  (px;)(0,2)=-1 (4.3)

By Green'’s formula

b
m(b,Z)—’tl(b’w) =/xb(t,z))mdt’ @
Z—w

0

and, in factn (b, z) is the Titchmarsh—Weyl coefficient for the self-adjoint realization in
L?(0, b) corresponding to the self-adjoint boundary conditions

(pu’)(0) =0, u(b) = 0.

Now assume that- DpD + ¢ is in the limit-point case ato. Then the restriction by the
boundary conditions (0) = 0 and(pu')(0) = 0 defines a symmetric, completely nonself-
adjoint operator with defect number4, 1) (see, e.g., [10] for the complete nonself-
adjointness). The assumption of the limit-point casexats equivalent to the functions
m(b, 7) having a unique limiin(z) for eachz € C asb — oo. In this case

mEE [ xeoxGwar

—w
0
where

x (¢, 2) =m(ui(-, z) +u2(-, z)
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is the unique solution of (4.1) which belongsitd(0, o). In fact,m(z) is the Titchmarsh—
Wey! coefficient for the self-adjoint realization ih?(0, co) corresponding to the self-
adjoint boundary conditiofipu’)(0) = 0. The fractional linear transformation

m(z) —t

me(z) = m

defines the Titchmarsh-Weyl coefficients for the self-adjoint realizatidr?{0, co) cor-
responding to the self-adjoint boundary condition

(pu")(0) =1u(0), 7eRU{c0}.
For the underlying theory see, for instance, [4,7,14,15,17].
Theorem 4.1.Let p andq be real-valued functions on the intendll, co) such thatl/p
and g are locally integrable. Assume that the differential operatabp D + ¢ is in the

limit-point case atoo. Let §(y):[yo, o0) — (0,1) be a function as in Lemma.2 and
assume that

o
/1+yf(f(” Po(t) dt

V350) < 00. (4.5)

Yo

Thenm(z) € N1 and
lim m(@y)=0.

y—>00
Moreover,m,(z) € N for all T € R, and the boundary conditiom(0) = 0, corresponding
to T = oo, determines the generalized Friedrichs extension.
Proof. It follows from the boundary conditions (4.3) that the function, z) = x5 (-, ),
defined in (4.2), satisfies (3.1) with
Equality (4.4) implies that fop > 0,

b
Im(b,iy)| > Imm(b,iy)zy/ lutt, iy)[ dt. (4.7)
0

Choosée > 1. Then it follows from (4.6), (4.7), and (i) of Lemma 3.3 that
8(y)
|m(b.iy)| > (1= co)2y8(y) |m(b.iy)[* = 21+ o)y |m (b, iy)] / Po(1) dt,
0
whereco, yo, and the functiord(y) are as in Lemma 3.2. This implies

1421+ o)y [ Podr _ 1+ Jg Poydi
(1= c0)?y8(y) h y8(y)

Im(b,iy)| < . (4.8)
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and the estimate in the right-hand side is independebt bitegration of (4.8) leads to

oo

° . 3(y)
m(b 1+ Po(1) dt
/I (,ly)ldy<C/ YJo~ Po@®)
y
Yo

> < Q.
ye8(y)
Yo
By Proposition 2.3 als@:(z) satisfiesfy‘;o |m(iy)|/ydy < co. Hence, clearlyn(z) € N1
andm(iy) — 0 asy — oo. The second statement is now a consequence of the facts pre-
sented in Section 2.0

In Section 5 sufficient conditions will be given to guarantee assumption (4.5). However,
it is not difficult to see that assumption (4.5) is satisfied when the fungtisrcontinuous
and lim,_.o p(x) > 0. In fact, in this case the results in Theorem 4.1 can be sharpened;
see [14, Theorem 10.2.4] for the special case 1.

Theorem 4.2.Let the assumptions be as in Theorérhand assume, in addition, thatis
continuous and thdtm,_.g p(x) > 0. Then there exist > 0 and B > 0 so that

A< y|mGiy)| < B (4.9)
for sufficiently largey. In particular,m(z) e N,, 1/2 < n < 1, and
lim m(iy)=0.
y—)OO

Moreoverm.(z) € N,, 1/2 < n < 1, for all r € R, and the boundary conditiom(0) = 0,
corresponding ta = oo, determines the generalized Friedrichs extension.

Proof. Let the functiors(y) be as in the proof of Lemma 3.2. One may assume et
> 0forx €[0,8(yg)]. Then (4.6), (4.7), and (ii) of Lemma 3.2 imply that

14 2(1+co)2y 2 Po(t) dt [20) py(r)2dr

e T B L oL A To0
(4.10)
Take the limit a®» — oo in (4.10), and rewrite the result as follows:
2. 8
V2 200 P2 @i
VY3()
Then the definition 0 (y) in (3.11) and the equality in (3.12) show that
5(y)
yPL(8) = do— / %zg) dt =do+o(1), y— 0. (4.12)
0

Moreover, if po = limy_.q p(x) > 0, then
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S(y) 5(y)
PL(8) / L=t / L u
1 = _— = — D ———
p) poJ 1+o0(D)
0 0
S(y)
1

_ _ 12
_%O/I(1+0(1))dt_2p05(y) (140(1), y— oo.

Substituting this into (4.12) leads to

VY 8(y) =+/2podo+0(1), y—> oo. (4.13)
Similarly it is seen that foy — oo,
8(y) 8(y)
2p0d 3/2
y / Po(t)dt — do, y3/? / Po(t)?dt — %. (4.14)
0
0 0

It follows from (4.13) and (4.14) that the limit as— oo of the quadratic polynomial in
the left-hand side of (4.11) is given by
y2_ 1+20+co’do  2do
(1 - c0)2v/2podo 3po
with X =, /y|m(iy)|. Clearly, both roots of (4.15) are positive (and distinct), which im-
plies (4.9). The remaining assertions follow from the facts presented in Sectian 2.

(4.15)

Remark 4.1.1t is of independent interest to notice that in the case whetel Atkin-

son [5] has proved the existence of the limit Jimy, ,/y|m(iy)| with a different method,

which is stronger than estimate (4.9). However, for the purposes in the present paper the
key result needed to guarantee the existence of a generalized Friedrichs extension is to
prove the integrability conditions in (1.3), or equivalently, that at least for some (and then
for all) r € R the conditionn; (z) € N1 is satisfied.

5. Further sufficient conditions

In this section it is shown that (4.5) is a mild condition which can be verified in simple
terms. Define the real-valued functidii(x) by

X
Po1(x) = / Po(t)dt.
0
Clearly, Py1(x) is continuous and nondecreasing[fnoo) with Py1(0) = 0.

Proposition 5.1.Let p andq be as in Theorem.1, and assume that one of the following
functions
Po1(3)

—_— 51
P1(8)|p(d)] &
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or

Po(8)
- (5.2)

is locally integrable in a neighborhood 6f Then there exists a monotonically decreasing,
absolutely continuous functiai(y) : [yo, co) — (0, 1) with the properties in Lemma.2
and such that

o0

/ 1+ yPor(6(y))

350) dy < oo. (5.3)

Yo

Proof. Assume that (5.1) is integrable near 0. Let @g < 1 and letdp > 0 be defined by
¥ (dp) = co. The identity
=2
uniquely determines a functidi{y) on [y1, c0), for somey; > 0, which is monotonically
decreasing. Clearly,(y) — 0 asy — oo. Definition (5.4) implies that

L_Ewgzpo((g(y))_)o’ y — 0.

y8(y) do 8(y) do
Thus,s(y) admits properties (i) and (ii) in Lemma 3.2. Using the notations in (3.5), choose
yo = y1 such thatPo(8(y0)) Qo(8(y0)) < dp/2, and such that(yg) < 1. Then clearly for
all y > yoand 0< x <8(y),

P1(8(y)) (5.4)

[ Qo) + yr

dt < Po(x) Qo(x) + y P1(x) < do.
|p(D)]

Hence, estimate (3.9) in Lemma 3.2 is satisfied, and thus, inequality (3.10) holds for every
y = yo and 0< x < 8(y). Clearly, P1(x) and hence alsé(y) is absolutely continuous by
Lemma A.1. Now (5.4) gives

_ dolp(3(y))|
2y28(y)
Since (5.1) is integrable near 0, also

P
< 01(8) n 1) 1
P1(8) |p(d)]
is integrable near 0. The change of variahbies 5(y), (5.5), and the local integrability
of (5.1) lead to (5.3).

Next assume that (5.2) is integrable near 0. The functiBg(x) is absolutely continu-
ous and monotonically increasing. Hence,dpr> 0,

§'(y)= (5.5)

d
5(y) Po(5(y)) = % (5.6)
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uniquely determines a functiof(y), which is monotonically decreasing diy1, c0),
y1 > 0. Clearly,§(y) - 0 asy — oo and

— = _Py(8(y)) >0, y— oo,
80) o 0(8(»)) y
so that properties (i) and (ii) in Lemma 3.2 are satisfied. Observe that
doP1(3(y)) do
PO =55 S5
YPCO) = 55 re0 2

Chooseyg > y1 such thatPp(8(y0)) Qo(8(yo)) < dp/2 and such that(yg) < 1. Then esti-
mate (3.9) in Lemma 3.2 is satisfied. The absolute continui$/( of again follows from
Lemma A.1. Hence, (5.6) gives

PG 1\, do
) =— . 5.7
< 500) +|p<a(y>)|) W) ="250) -7

It follows from

d
yP0I(8(1) <38 PO(B(M) = 3

that assertion (5.3) holds if

o]

1

Yo

Since (5.2) is locally integrable, also

8 [p(8)]

is locally integrable. The change of variabdes §(y), (5.7), and local integrability of (5.2)
now lead to (5.8). O

P 1
0(5) n

The functions(y) that was constructed in the proof of Lemma 3.2 satisfig® <
yP1(8(y)) < dp for all y > yo, so that P1(§(y)) ~ 1/y, see (3.12) in the proof of
Lemma 3.2. In this sense it is asymptotically equivalent to the function defined
in (5.4).

The assumptions imposed prandg to prove the main theorems are rather mild. More-
over, the inequalities that were used in proving these results have been obtaiwedfor
rather than for Imm(iy). The conclusion is that, even under the more general assumptions
used in the present paper, the above results actually lead to somewhat stronger proper-
ties for the Titchmarsh—Wey| coefficients associated with Sturm—Liouville problems of the
form (4.1) than what is needed for the Kac subclaséeef Nevanlinna functions and for
the existence of generalized Friedrichs extensions.
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6. A lower bound

The method by which Theorems 4.1 and 4.2 were proved also provides a lower bound
for |m(iy)| whenp(x) is nonnegative. Denote
X
Pox(x) = / Po(1)?dr.
0

Theorem 6.1.Let the functionp be nonnegative, l&d(y) : [yo, o0) — (0, 1) be defined
by (5.4), and letso = § (yo). Then for som& > 0,

8,

o0 0
Im(iy)| / Poz(8)
dy>C | ———————dé. 6.1
y/ y @ J @ PP @) ©.1)
0

Proof. For a polynomiak2 —az + ¢, wherea, ¢ > 0 anda? — 4c¢ > 0, with the real roots
r1,r2 (> 0) it is easy to check that/a < min{ry, r2}. Foré(y) : [yo, 00) — (0, 1) in (5.4)

the quadratic inequality (4.10) is satisfied. Therefore, one obtains the following estimate
for |m(b,iy)| from below:

(1—c0)’yPoa®) _ . PoaAd)
1421+ c?yPou®) ~ " 1/y+ Por(d)’
HereC1 > 0 depends only ong, 0 < ¢g < 1. Integration by parts yieldB; (§) = 8 Po(8) —
Pp1(8). Now, taking into account (5.4) one obtains from (6.2) the estimate

Po2(3) L Po2(d)
P1(8) + Po1(8)  8Po(8)’
whereC > 0 depends only ong. Hence, one may take the lintit— oo in (6.3) to obtain

the corresponding inequality fam(iy)|. Therefore, the previous inequality and identi-
ties (5.4) and (5.5) lead to

[ee] . 00 )

/ Im(iy)| dy > C/ Po2(8(y)) dy:C/ Po2(6) ds.
y

Yo

lm(b,iy)| > 5=5(y). (6.2)

Im,iy)| >C §=45(y), (6.3)

; y8(y)Po(8(y)) , Po(8) P1(8)|p ()]
0

which proves (6.1). O

The conditions in Proposition 5.1 are satisfied by a funcpowhich behaves near 0
like 1= for ¢ > 0 or like ¢| In¢|**< for ¢ > 1, but they are not satisfied jf behaves like
t/Inz)3*< for 0 < ¢ < 1. This is due to the fact that the present methods give estimates for
|m(b,iy)| and not for Immn (b, iy). Using Theorem 6.1 it is shown that indeegbibehaves
like 7| In¢|1t¢ for 1 < ¢ < 2, then|m(b, iy)|/y is not integrable oriyg, o).

Example 6.1.Let p(r) =t|Int|1¢, 0< ¢ < 1, for, say, O< 1 < 1/2. Then ¥(c|Int|) is a
primitive for 1/ p, so that ¥p € L*(0, 1/2). But
Po2(3)

(6.4)
Po(8) P1(8)| ()]
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is not integrable ove(O, §p) for any §g € (0, 1/2). Then, according to Theorem 6.1, the
function|m (b, iy)|/y is not integrable oriyg, 00).

Proof. A straightforward calculation gives

8
1 dt

Po(3) = iy [
0

8
dt
c|In8|C’ P1(5)=/W: Po2(8) =
0

Hence, the functios (), defined by (6.4), satisfies
S6) = 1 [21/1Ine|%) dr
¢ 81In81¢(8/1N812)(fo (1/|Int|1) dr (| In§| L+ /8))
Next observe that for > 0 by I'Hopital’s rule,
8
1/|Int|V)dt
o Q/lnehdr 1
§—>0  §/|Ingv s—»01—v/|Ing|
Hence, a$ — 0,

S6) 1 1
c§lIns|c

Therefore S(§) is not integrable or0, §p). O

Appendix A

The various functions which were constructed above are absolutely continuous. This
fact is a consequence of the following lemma.

Lemma A.l.Let F:[a, b] — [«, B] be a strictly increasing, absolutely continuous bijec-
tion, where—oo <a < b < 00 and —oco < o < B < oo. Assume thaf’(x) exists and
that F/(x) > 0 almost everywhere ofa, b]. Then the inverse functioA—! is absolutely
continuous.

In particular, if f € L[a, b] and f > 0 almost everywhere, then the functindefined
by

F(x):/f(t)dt, x €la,b],

has an absolutely continuous inverse?.

Proof. Let N be the subset dfa, b] of Lebesgue measure 0 such thé{x) exists and
F’(x) > 0 except forx € N. Then(F~1)/(y) exists with 0< (F~1)'(y) < oo except for
y € F(N), a set of Lebesgue measure 0. Now one can proceed as follows. The set

E={x €la,b]: (DTF 1 (F(x)) =00} CN,
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where D' denotes the upper-right derivative, clearly has Lebesgue measure 0. By [13,
(18.35)],F~1 is absolutely continuous.
Another, more direct, way to proceed is to use

FY(F@))F (x)=1, x¢N.

Due to the change of variables formula for an absolutely continuous transformation applied
to integrable functions (see, for instance, [16, Section 26]),

B b
/}F91Y00dy=i/(F*5%me)F%x>dx

b
=/dx=b—a=F_l(,3)—F_l(01)~

a

Here,(F~1Y is a nonnegative measurable, and hence integrable function. Likewise,
&
F4®=/w4ﬂww+Fﬂm,sﬂmm
o

which shows tha#~1 is absolutely continuous.
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