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Abstract

Assume that the differential operator−DpD+ q in L2(0,∞) has 0 as a regular point and that t
limit-point case prevails at∞. If p ≡ 1 andq satisfies some smoothness conditions, it was pro
by Gelfand and Levitan that the spectral functionsσ(t) for the Sturm–Liouville operator corre
sponding to the boundary conditions(pu′)(0) = τu(0), τ ∈ R, satisfy the integrability condition∫
R
dσ (t)/(|t | + 1) <∞. The boundary conditionu(0) = 0 is exceptional, since the correspondi

spectral function does not satisfy such an integrability condition. In fact, this situation gives an
ple of a differential operator for which one can construct an analog of the Friedrichs extension
though the underlying minimal operator is not semibounded. In the present paper it is show
simple arguments and under mild conditions on the coefficientsp andq, including the casep ≡ 1,
that there exists an analog of the Friedrichs extension for nonsemibounded second order diff
operators of the form−DpD + q by establishing the above mentioned integrability conditions
the underlying spectral functions.
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1. Introduction

Consider the singular Sturm–Liouville operator−D2 + q on the halfline[0,∞). As-
sume that the real-valued functionq is locally integrable and assume that the limit-po
case prevails at∞, so that the differential operator−D2+q in L2(0,∞)with the boundary
conditions

u(0)= u′(0)= 0

is densely defined and symmetric with defect numbers (1.1). Its self-adjoint exten
A(τ), τ ∈ R ∪ {∞}, in L2(0,∞) correspond to the boundary conditions

u′(0)= τu(0), τ ∈ R ∪ {∞}. (1.1)

When properly interpreted, the self-adjoint extensionsA(τ) in (1.1) withτ ∈ R behave like
rank one perturbations of the extensionA(0) while the extensionA(∞) can be obtained
via a completion procedure from the corresponding minimal operator, which need
semibounded. In particular, for allτ ∈ R the domains dom|A(τ)|1/2 coincide with each
others and the completion of the domain of the minimal operator with respect to the
generated by the modulus|A(τ)| (or with respect to the graph topology of|A(τ)|1/2 which
is independent ofτ ∈ R) produces the domain dom|A(∞)|1/2 as a one-dimensional re
striction of dom|A(τ)|1/2. Due to the analogy with the case where the minimal operat
semibounded, the self-adjoint extensionA(∞) is called the generalized Friedrichs exte
sion. Since the minimal operator need not be semibounded (for an example, see [17
the usual Friedrichs extension need not exist, but if it exists, it coincides with the ge
ized Friedrichs extensionA(∞) (see [1], and [2] for extension). These facts follow fro
the results proved in [11,12] in an abstract setting. It is emphasized that there are di
tial operators for which one cannot construct an analog of the Friedrichs extension, c
Therefore, it is of particular interest to find conditions or criteria which guarantee th
istence of the generalized Friedrichs extension for nonsemibounded differential ope

Denote the Titchmarsh–Weyl coefficients corresponding to the self-adjoint exten
A(τ) bymτ (z). The facts presented above can be seen as consequences of some a
properties of the functionsmτ (z), τ ∈ R∪{∞}. If the corresponding spectral functions a
denoted byστ (t), then

mτ (z)= −τ +
∫
R

dστ (t)

t − z
,

∫
R

dστ (t)

|t| + 1
<∞, τ ∈ R, (1.2)

and

mτ (z)= α +
∫
R

(
1

t − z
− t

t2 + 1

)
dστ (t),

α ∈ R,

∫
R

dστ (t)

t2 + 1
<∞,

∫
R

dστ (t)

|t| + 1
= ∞, τ = ∞. (1.3)

The observation that the Titchmarsh–Weyl coefficientsmτ (z) satisfy (1.2) goes back t
Gelfand and Levitan [9], under certain smoothness conditions onq . More general state
ments with weaker smoothness conditions onq are due to Hille [14, Theorem 10.2.4] an
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Levitan and Sargsjan [15, Theorem 5.2]. The proofs of Gelfand, Levitan, and Sa
are based on an integral representation of the resolvent operator, which involves the
sponding generalized Fourier transforms. The proof of Hille is more direct as it uses W
original limit-point, limit-circle construction, see [4,7,17,18].That is, the Titchmarsh–W
coefficientmτ(z) is the limit of mτ (b, z) asb → ∞, whenmτ (b, z) is the Titchmarsh–
Weyl coefficient of−D2 + q on the interval[0, b] with the boundary conditions (1.1) an
u(b)= 0. In this sense the generalized Friedrichs extension on[0,∞) can be seen to b
the limit of Friedrichs extensions on[0, b] asb→ ∞. The details of Hille’s proof are quit
technical. An attempt at simplification of them is due to Wray [19].

The purpose of the present paper is to show the existence of the generalized Fri
extension for nonsemibounded second order differential operators of the form−DpD + q

by establishing the above mentioned integrability conditions for the underlying sp
functions (cf. [12]) under mild conditions on the coefficientsp andq . This involves, in
particular, a coherent treatment of the problem in the context of Nevanlinna function
analytic functions with positive imaginary part in the upper half-plane, cf. [8]. The
proximation of the singular problem on[0,∞) by regular problems on[0, b] is successful
due to a uniform bound given by Hille [14, Theorem 10.2.1]. This uniform bound fo
Titchmarsh–Weyl functions on[0, b], b > 0, gives a justification for the convergence of t
corresponding spectral functions.

In this paper the general Sturm–Liouville operator−DpD + q is considered in
L2(0,∞), with 1/p andq being locally integrable on[0,∞). Then 0 is a regular poin
and it is assumed that the limit-point case prevails at∞. Under mild conditions onp it is
proved, in an elementary manner, that the spectral functions corresponding to the
ary conditions(pu′)(0)= τu(0), τ ∈ R, behave as in (1.2) and that the boundary condi
u(0)= 0 corresponds to the generalized Friedrichs extension in the sense of [12]. T
sults in the present paper can be extended to the case of Sturm–Liouville operators
coefficients depend rationally on the eigenvalue parameter, cf. [3].

2. Convergence of Nevanlinna functions

A functionQ(z) :C \ R → C is said to belong to the classN of Nevanlinna functions if
Q(z) is holomorphic,Q(z)=Q(z̄), and(Im z)(ImQ(z))� 0 for all z ∈ C \ R. A function
Q(z) belongs toN if and only if

Q(z)= α + βz+
∫
R

(
1

t − z
− t

t2 + 1

)
dσ(t), (2.1)

where

α ∈ R, β � 0,
∫
R

dσ(t)

t2 + 1
<∞, (2.2)

andσ(t) is a nondecreasing function, see [8]. It is always assumed that the functionσ(t) is
normalized such thatσ(t)= (σ (t + 0)+ σ(t − 0))/2 andσ(0)= 0; in this case the abov
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correspondence is one-to-one. LetQ(z) ∈ N and define the functionQτ(z), τ ∈ R ∪ {∞},
as a fractional linear transform ofQ(z) by

Qτ (z)= Q(z)− τ

1+ τQ(z)
, τ ∈ R ∪ {∞}. (2.3)

Clearly,Qτ(z) belongs toN for all τ ∈ R ∪ {∞}. The subclassNη, 0< η � 1, consists of
those functionsQ(z) ∈ N which satisfy the additional asymptotic condition

∞∫
1

ImQ(iy)

yη
dy <∞.

It follows from this condition thatβ = 0 in (2.1). In fact, a functionQ(z) belongs toNη if
and only if

Q(z)= γ +
∫
R

dσ(t)

t − z
, (2.4)

where

γ ∈ R,

∫
R

dσ(t)

|t|η + 1
<∞.

Hereγ = limy→∞Q(iy) ∈ R. The subclassN0 consists of those functionsQ(z) ∈ N which
satisfy

sup
y>0

y ImQ(iy) <∞.

Clearly N0 ⊂ Nη, 0< η � 1. A functionQ(z) belongs toN0 if and only if Q(z) has the
integral representation (2.4) with

γ ∈ R,

∫
R

dσ(t) <∞.

If Q(z) ∈ Nη, 0� η� 1, and limy→∞Q(iy)= 0, thenQτ(z) in (2.3) belongs toNη for all
τ ∈ R, whileQ∞(z) ∈ N \ N1, cf. [12]. The subclassN1 goes back to Kac.

There is a natural topology forN, namely the topology of uniform convergence
compact subsets ofC \R. ThenN is a complete metric space, see [8, p. 32]. The follow
result is standard; for a proof see [6].

Proposition 2.1.LetQn(z) ∈ N, n ∈ N, have the integral representation

Qn(z)= αn + βnz+
∫
R

(
1

t − z
− t

t2 + 1

)
dσn(t)

with

αn ∈ R, βn � 0,
∫
dσn(t)

t2 + 1
<∞,
R
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and letQ(z) ∈ N have the integral representation(2.1)with (2.2). ThenQn(z) converges
toQ(z) in the sense ofN if and only if forn→ ∞,

αn → α, βn → β, σn(t)→ σ(t),

where the last limit takes place at the continuity points ofσ(t).

An analog of Proposition 2.1 for the subclassNη reads as follows.

Corollary 2.1. Assume that0� η� 1. LetQn(z) ∈ Nη, n ∈ N, have the integral represen
tation

Qn(z)= γn +
∫
R

dσn(t)

t − z
,

whereγn ∈ R and
∫

R
dσn(t)/(|t|η + 1) <∞, and letQ(z) ∈ Nη have the integral repre

sentation(2.4)with γ ∈ R and
∫

R
dσ(t)/(|t|η + 1) <∞. ThenQn(z) converges toQ(z)

in the sense ofN if and only if

γn → γ, σn(t)→ σ(t),

where the last limit takes place at the continuity points ofσ(t).

Proof. The weak convergence of the spectral measuresdσn implies

αn − γn =
∫
R

t

t2 + 1
dσn(t)→

∫
R

t

t2 + 1
dσ(t)= α − γ.

Now, clearlyαn → α is equivalent toγn → γ . ✷
The convergence properties in Proposition 2.1 and its corollary may be augmen

means of the following compactness criterion, see [8].

Proposition 2.2.LetP be an infinite family of functions inN such that for somez0 ∈ C \R

there is a constantM such that|Q(z0)| �M for all Q(z) ∈ P. Then there is a sequence
P which is convergent.

In particular, if a sequence of Nevanlinna functionsQn(z) converges at some poin
z0 ∈ C \ R, then there is a subsequence ofQn(z) which converges in the sense ofN.
Moreover, if the Nevanlinna functionsQn(z) converge pointwise for eachz ∈ C \ R to
a functionQ(z), thenQ(z) is a Nevanlinna function and the convergence is in the s
of N. The next result deals with the convergence of functions inNη, 0� η� 1.

Proposition 2.3.LetQn(z), n ∈ N, belong toN and assume thatQn(z)→Q(z) asn→ ∞
for all z ∈ C \ R. If, for 0< η� 1, there is a constantN such that for alln ∈ N,

∞∫
ImQn(iy)

yη
dy �N, (2.5)
1
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∞∫

1

ImQ(iy)

yη
dy �N (2.6)

andQ(z) ∈ Nη. Moreover, if there is a constantN such that for alln ∈ N,

sup
y>0

y ImQn(iy)�N, (2.7)

then

sup
y>0

y ImQ(iy)�N (2.8)

andQ(z) ∈ N0. The same assertions are also true whenImQn in (2.5), (2.7) and ImQ

in (2.6), (2.8)are replaced by|Qn| and|Q|, respectively.

Proof. By assumptions, the functionsQn(z) tend toQ(z) in the sense ofN, so thatQ(z)
∈ N and the convergence is uniform on compact subsets. This together with (2.5) im
that for eachR > 1,

R∫
1

ImQ(iy)

yη
dy = lim

n→∞

R∫
1

ImQn(iy)

yη
dy �N.

Now lettingR → ∞ one obtains (2.6) by the monotone convergence theorem. In parti
Q(z) ∈ Nη. The assertion that conditions (2.7) imply (2.8) andQ(z) ∈ N0 is now also
obvious. The proofs with ImQn and ImQ replaced by their absolute values|Qn| and|Q|
are similar. ✷

Assume that 0� η� 1. With the notations from Corollary 2.1 the conditions in Pro
sition 2.3 are equivalent to

γn → γ, σn(t)→ σ(t),

∫
R

dσn(t)

|t|η + 1
�A.

The conclusion is then equivalent to∫
R

dσ(t)

|t|η + 1
�A.

This resembles the approach of [19]. In the present approach the conditions concern
growth of the spectral functions are more general.

3. Some estimates for Sturm–Liouville operators

Let p andq be complex-valued functions on[0,∞) such that 1/p andq are locally
integrable. Letα(z) andβ(z) be (locally) holomorphic functions onC \ R. Consider the
solutionu(·, z) of the initial value problem

−(pu′)′ + (q − z)u= 0, u(0, z)= α(z), (pu′)(0, z)= β(z). (3.1)
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Clearly, the unique solution of the following “unperturbed equation:”

−(pu′)′ = 0, u(0, z)= α(z), (pu′)(0, z)= β(z), (3.2)

is given by

α(z)+ β(z)P (x), P (x)=
x∫

0

1

p(t)
dt. (3.3)

As to (3.1), integration gives

(pu′)(x, z)= β(z)+
x∫

0

(
q(t)− z

)
u(t, z) dt,

and a further integration leads to the following integral equation for the solution o
“perturbed equation” (3.1):

u(x, z)= α(z)+ β(z)P (x)+
x∫

0

1

p(t)

( t∫
0

(
q(s)− z

)
u(s, z) ds

)
dt. (3.4)

Conversely, the solution of (3.4) satisfies (3.1). Define the functionsQ0, P0, andP1 by

Q0(x)=
x∫

0

∣∣q(t)∣∣dt, P0(x)=
x∫

0

dt

|p(t)| , P1(x)=
x∫

0

t

|p(t)| dt. (3.5)

Clearly, these functions are real-valued, continuous, and nondecreasing on[0,∞) and
Q0(0)= P0(0)= P1(0)= 0. In the following, the functionΨ stands forΨ (t)= tet , so that
alsoΨ is real-valued, continuous, and monotonically increasing on[0,∞) with Ψ (0)= 0.
The next lemma gives an estimate for the difference of the solutionu(x, z) in (3.1) and
solution (3.3) of the unperturbed equation (3.2).

Lemma 3.1.Letu(·, z) be the solution of(3.1). Then for allx ∈ [0,∞) andz ∈ C \ R,∣∣u(x, z)− α(z)− β(z)P (x)
∣∣

�
(∣∣α(z)∣∣+ ∣∣β(z)∣∣P0(x)

)
Ψ

( x∫
0

Q0(t)+ |z|t
|p(t)| dt

)
. (3.6)

Proof. LetM(t, z)= max0�s�t |u(s, z)|. Then it follows from (3.4) and (3.5) that

∣∣u(x, z)∣∣� ∣∣α(z)∣∣+ ∣∣β(z)∣∣P0(x)+
x∫

0

Q0(t)+ |z|t
|p(t)| M(t, z) dt.

Therefore, also

M(x, z)�
∣∣α(z)∣∣+ ∣∣β(z)∣∣P0(x)+

x∫
Q0(t)+ |z|t

|p(t)| M(t, z) dt. (3.7)
0
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Inequality (3.7) can be solved in the usual manner by applying Gronwall’s lemma, see
In fact, for eachz ∈ C \ R the function|α(z)| + |β(z)|P0(x) is nondecreasing, and ther
fore (3.7) leads to

M(x, z)�
(∣∣α(z)∣∣+ ∣∣β(z)∣∣P0(x)

)
exp

( x∫
0

Q0(t)+ |z|t
|p(t)| dt

)
. (3.8)

Now, from (3.4) and (3.8) one obtains

∣∣u(x, z)− α(z)− β(z)P (x)
∣∣� (∣∣α(z)∣∣+ ∣∣β(z)∣∣P0(x)

)
Ψ

( x∫
0

Q0(t)+ |z|t
|p(t)| dt

)
,

which proves the statement.✷
For eachz ∈ C \ R the values of the functionΨ in Lemma 3.1 can be made arbitrar

small whenx is restricted to a sufficiently small interval[0, δ(z)]. It will be enough to
define such intervals forz= iy, y > 0. One selection is presented in the next lemma.

Lemma 3.2.For each0< c0 < 1 there existy0 > 0 and a monotonically decreasing fun
tion δ : [y0,∞)→ (0,1) such that fory → ∞,

(i) δ(y)→ 0,
(ii) yδ(y)→ ∞,

and for ally � y0 andx ∈ [0, δ(y)],

Ψ

( x∫
0

Q0(t)+ yt

|p(t)| dt

)
� c0. (3.9)

Consequently,∣∣u(x, iy)− α(iy)− β(iy)P (x)
∣∣� c0

(∣∣α(iy)∣∣+ ∣∣β(iy)∣∣P0(x)
)
. (3.10)

Proof. Let 0< c0 < 1 and letd0 be the unique positive number such thatΨ (d0) = c0.
Then there existsy1 > 0 such that

δ(y)∫
0

Q0(t)+ yt

|p(t)| dt = d0 (3.11)

uniquely determines a functionδ(y) on [y1,∞), which is monotonically decreasing. Usin
P1(x) defined in (3.5), identity (3.11) gives

yP1
(
δ(y)

)= d0 −
δ(y)∫

Q0(t)

|p(t)| dt � d0. (3.12)
0
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This implies thatδ(y)→ 0 asy → ∞, and thus proves (i). Now, the integral term in (3.1
can be made smaller thand0/2 when, say,y � y2 � y1. Therefore, fory � y2 one has
yP1(δ(y))� d0/2 and

1

yδ(y)
� 2

d0

P1(δ(y))

δ(y)
� 2

d0
P0
(
δ(y)

)→ 0, y → ∞,

which shows (ii). Finally, choosey0 � y2 such thatδ(y0) < 1. Clearly, fory � y0 esti-
mate (3.9) is satisfied, and thus, by Lemma 3.1 inequality (3.10) holds for everyy � y0
and 0� x � δ(y). ✷
Lemma 3.3.Letu(·, z) be the solution of(3.1). Choose0< c0 < 1 and letδ(y) : [y0,∞)→
(0,1) be a function as in Lemma3.2.

(i) Then fory � y0 andb > 1,

b∫
0

∣∣u(t, iy)∣∣2 dt > (1− c0)
2δ(y)

∣∣α(iy)∣∣2

− 2(1+ c0)
2
∣∣α(iy)β(iy)∣∣

δ(y)∫
0

P0(t) dt.

(ii) If, in addition,p � 0 in a neighborhood of 0, then fory � y0 andb > 1,

b∫
0

∣∣u(t, iy)∣∣2 dt > (1− c0)
2

(
δ(y)

∣∣α(iy)∣∣2 + ∣∣β(iy)∣∣2
δ(y)∫
0

P0(t)
2dt

)

− 2(1+ c0)
2
∣∣α(iy)β(iy)∣∣

δ(y)∫
0

P0(t) dt.

Proof. Let δ(y) be a function with the properties in Lemma 3.2. It follows from (3.10) t
there are complex numbersζ1 (= ζ1(x, y)) andζ2 (= ζ2(x, y)) with |ζ1|, |ζ2| � c0, such
that for ally � y0 and 0� x � δ(y),

u(x, iy)= α(iy)(1+ ζ1)+ β(iy)
(
P(x)+ ζ2P0(x)

)
.

The triangle inequality implies∣∣u(x, iy)∣∣2 � (1− c0)
2
∣∣α(iy)∣∣2 − 2(1+ c0)

2
∣∣α(iy)β(iy)∣∣P0(x)

+ ∣∣β(iy)(P(x)+ ζ2P0(x)
)∣∣2. (3.13)

To obtain estimate (i) delete the last term in the right-hand side of (3.13), integrate
sides of the resulting inequality from 0 toδ(y), and then useδ(y)� δ(y0) < 1< b.

If p � 0, thenP(x)= P0(x) and the following inequality holds:∣∣P(x)+ ζ2P0(x)
∣∣= ∣∣(1+ ζ2)P0(x)

∣∣� (1− c0)P0(x).
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Estimate (ii) is now obtained by substituting the previous estimate into (3.13), integ
both sides of the resulting inequality from 0 toδ(y), and finally usingδ(y) � δ(y0) <

1< b. ✷

4. Titchmarsh–Weyl coefficients

Let p andq be real-valued functions on the interval[0,∞) such that 1/p andq are
locally integrable. The eigenvalue problem

(−DpD + q)u= zu (4.1)

has two linearly independent solutionsu1(·, z) andu2(·, z), entire inz, satisfying the initial
conditions

u1(0, z)= 1, (pu′
1)(0, z)= 0, u2(0, z)= 0, (pu′

2)(0, z)= −1.

Define the meromorphic functionm(b, z) by

m(b, z)= −u2(b, z)

u1(b, z)
.

Then the functionχb(·, z) defined by

χb(·, z)=m(b, z)u1(·, z)+ u2(·, z) (4.2)

satisfies the boundary conditions

χb(b, z)= 0, χb(0, z)=m(b, z), (pχ ′
b)(0, z)= −1. (4.3)

By Green’s formula

m(b, z)−m(b,w)

z− w̄
=

b∫
0

χb(t, z)χb(t,w) dt, (4.4)

and, in fact,m(b, z) is the Titchmarsh–Weyl coefficient for the self-adjoint realization
L2(0, b) corresponding to the self-adjoint boundary conditions

(pu′)(0)= 0, u(b)= 0.

Now assume that−DpD + q is in the limit-point case at∞. Then the restriction by th
boundary conditionsu(0)= 0 and(pu′)(0)= 0 defines a symmetric, completely nonse
adjoint operator with defect numbers(1,1) (see, e.g., [10] for the complete nonse
adjointness). The assumption of the limit-point case at∞ is equivalent to the function
m(b, z) having a unique limitm(z) for eachz ∈ C asb→ ∞. In this case

m(z)−m(w)

z− w̄
=

∞∫
0

χ(t, z)χ(t,w)dt,

where

χ(·, z)=m(z)u1(·, z)+ u2(·, z)
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is the unique solution of (4.1) which belongs toL2(0,∞). In fact,m(z) is the Titchmarsh–
Weyl coefficient for the self-adjoint realization inL2(0,∞) corresponding to the sel
adjoint boundary condition(pu′)(0)= 0. The fractional linear transformation

mτ (z)= m(z)− τ

1+ τm(z)

defines the Titchmarsh–Weyl coefficients for the self-adjoint realization inL2(0,∞) cor-
responding to the self-adjoint boundary condition

(pu′)(0)= τu(0), τ ∈ R ∪ {∞}.
For the underlying theory see, for instance, [4,7,14,15,17].

Theorem 4.1.Let p andq be real-valued functions on the interval[0,∞) such that1/p
and q are locally integrable. Assume that the differential operator−DpD + q is in the
limit-point case at∞. Let δ(y) : [y0,∞) → (0,1) be a function as in Lemma3.2 and
assume that

∞∫
y0

1+ y
∫ δ(y)

0 P0(t) dt

y2δ(y)
dy <∞. (4.5)

Thenm(z) ∈ N1 and

lim
y→∞m(iy)= 0.

Moreover,mτ (z) ∈ N1 for all τ ∈ R, and the boundary conditionu(0)= 0, corresponding
to τ = ∞, determines the generalized Friedrichs extension.

Proof. It follows from the boundary conditions (4.3) that the functionu(·, z) = χb(·, z),
defined in (4.2), satisfies (3.1) with

α(z)=m(b, z), β(z)= −1. (4.6)

Equality (4.4) implies that fory > 0,

∣∣m(b, iy)∣∣� Imm(b, iy)= y

b∫
0

∣∣u(t, iy)∣∣2 dt. (4.7)

Chooseb > 1. Then it follows from (4.6), (4.7), and (i) of Lemma 3.3 that

∣∣m(b, iy)∣∣> (1− c0)
2yδ(y)

∣∣m(b, iy)∣∣2 − 2(1+ c0)
2y
∣∣m(b, iy)∣∣

δ(y)∫
0

P0(t) dt,

wherec0, y0, and the functionδ(y) are as in Lemma 3.2. This implies

∣∣m(b, iy)∣∣< 1+ 2(1+ c0)
2y
∫ δ(y)

0 P0(t) dt

2
� C

1+ y
∫ δ(y)

0 P0(t) dt
, (4.8)
(1− c0) yδ(y) yδ(y)
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and the estimate in the right-hand side is independent ofb. Integration of (4.8) leads to

∞∫
y0

|m(b, iy)|
y

dy < C

∞∫
y0

1+ y
∫ δ(y)

0 P0(t) dt

y2δ(y)
dy <∞.

By Proposition 2.3 alsom(z) satisfies
∫∞
y0

|m(iy)|/y dy < ∞. Hence, clearlym(z) ∈ N1
andm(iy)→ 0 asy → ∞. The second statement is now a consequence of the fact
sented in Section 2.✷

In Section 5 sufficient conditions will be given to guarantee assumption (4.5). How
it is not difficult to see that assumption (4.5) is satisfied when the functionp is continuous
and limx→0p(x) > 0. In fact, in this case the results in Theorem 4.1 can be sharp
see [14, Theorem 10.2.4] for the special casep ≡ 1.

Theorem 4.2.Let the assumptions be as in Theorem4.1and assume, in addition, thatp is
continuous and thatlimx→0p(x) > 0. Then there existA> 0 andB > 0 so that

A� √
y
∣∣m(iy)∣∣� B (4.9)

for sufficiently largey. In particular,m(z) ∈ Nη, 1/2< η� 1, and

lim
y→∞m(iy)= 0.

Moreover,mτ (z) ∈ Nη, 1/2< η � 1, for all τ ∈ R, and the boundary conditionu(0)= 0,
corresponding toτ = ∞, determines the generalized Friedrichs extension.

Proof. Let the functionδ(y) be as in the proof of Lemma 3.2. One may assume thatp(x)

� 0 for x ∈ [0, δ(y0)]. Then (4.6), (4.7), and (ii) of Lemma 3.2 imply that

∣∣m(b, iy)∣∣2 − 1+ 2(1+ c0)
2y
∫ δ(y)

0 P0(t) dt

(1− c0)2yδ(y)

∣∣m(b, iy)∣∣+
∫ δ(y)

0 P0(t)
2dt

δ(y)
< 0.

(4.10)

Take the limit asb→ ∞ in (4.10), and rewrite the result as follows:

(√
y
∣∣m(iy)∣∣)2 − 1+ 2(1+ c0)

2y
∫ δ(y)

0 P0(t) dt

(1− c0)2
√
yδ(y)

√
y
∣∣m(iy)∣∣

+ y3/2
∫ δ(y)

0 P0(t)
2 dt√

yδ(y)
� 0. (4.11)

Then the definition ofδ(y) in (3.11) and the equality in (3.12) show that

yP1(δ)= d0 −
δ(y)∫
0

Q0(t)

p(t)
dt = d0 + o(1), y → ∞. (4.12)

Moreover, ifp0 = limx→0p(x) > 0, then
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then
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ng
P1(δ)=
δ(y)∫
0

t

p(t)
dt = 1

p0

δ(y)∫
0

t

1+ o(1)
dt

= 1

p0

δ(y)∫
0

t
(
1+ o(1)

)
dt = 1

2p0
δ(y)2

(
1+ o(1)

)
, y → ∞.

Substituting this into (4.12) leads to
√
y δ(y)=√

2p0d0 + o(1), y → ∞. (4.13)

Similarly it is seen that fory → ∞,

y

δ(y)∫
0

P0(t) dt → d0, y3/2

δ(y)∫
0

P0(t)
2dt → (2p0d0)

3/2

3p2
0

. (4.14)

It follows from (4.13) and (4.14) that the limit asy → ∞ of the quadratic polynomial in
the left-hand side of (4.11) is given by

X2 − 1+ 2(1+ c0)
2d0

(1− c0)2
√

2p0d0
X+ 2d0

3p0
(4.15)

with X = √
y|m(iy)|. Clearly, both roots of (4.15) are positive (and distinct), which

plies (4.9). The remaining assertions follow from the facts presented in Section 2.✷
Remark 4.1. It is of independent interest to notice that in the case wherep ≡ 1 Atkin-
son [5] has proved the existence of the limit limy→∞

√
y|m(iy)| with a different method

which is stronger than estimate (4.9). However, for the purposes in the present pa
key result needed to guarantee the existence of a generalized Friedrichs extensi
prove the integrability conditions in (1.3), or equivalently, that at least for some (and
for all) τ ∈ R the conditionmτ (z) ∈ N1 is satisfied.

5. Further sufficient conditions

In this section it is shown that (4.5) is a mild condition which can be verified in sim
terms. Define the real-valued functionP01(x) by

P01(x)=
x∫

0

P0(t) dt.

Clearly,P01(x) is continuous and nondecreasing on[0,∞) with P01(0)= 0.

Proposition 5.1.Letp andq be as in Theorem4.1, and assume that one of the followi
functions:

P01(δ)
(5.1)
P1(δ)|p(δ)|
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y

-

or

P0(δ)

δ
(5.2)

is locally integrable in a neighborhood of0. Then there exists a monotonically decreasi
absolutely continuous functionδ(y) : [y0,∞) → (0,1) with the properties in Lemma3.2
and such that

∞∫
y0

1+ yP01(δ(y))

y2δ(y)
dy <∞. (5.3)

Proof. Assume that (5.1) is integrable near 0. Let 0< c0 < 1 and letd0 > 0 be defined by
Ψ (d0)= c0. The identity

P1
(
δ(y)

)= d0

2y
(5.4)

uniquely determines a functionδ(y) on [y1,∞), for somey1 > 0, which is monotonically
decreasing. Clearly,δ(y)→ 0 asy → ∞. Definition (5.4) implies that

1

yδ(y)
= 2

d0

P1(δ(y))

δ(y)
� 2

d0
P0
(
δ(y)

)→ 0, y → ∞.

Thus,δ(y) admits properties (i) and (ii) in Lemma 3.2. Using the notations in (3.5), ch
y0 � y1 such thatP0(δ(y0))Q0(δ(y0)) � d0/2, and such thatδ(y0) < 1. Then clearly for
all y � y0 and 0� x � δ(y),

x∫
0

Q0(t)+ yt

|p(t)| dt � P0(x)Q0(x)+ yP1(x)� d0.

Hence, estimate (3.9) in Lemma 3.2 is satisfied, and thus, inequality (3.10) holds for
y � y0 and 0� x � δ(y). Clearly,P1(x) and hence alsoδ(y) is absolutely continuous b
Lemma A.1. Now (5.4) gives

δ′(y)= −d0|p(δ(y))|
2y2δ(y)

. (5.5)

Since (5.1) is integrable near 0, also(
P01(δ)

P1(δ)
+ 1

)
1

|p(δ)|
is integrable near 0. The change of variablesδ = δ(y), (5.5), and the local integrabilit
of (5.1) lead to (5.3).

Next assume that (5.2) is integrable near 0. The functionxP0(x) is absolutely continu
ous and monotonically increasing. Hence, ford0> 0,

δ(y)P0
(
δ(y)

)= d0
(5.6)
2y
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uniquely determines a functionδ(y), which is monotonically decreasing on[y1,∞),
y1> 0. Clearly,δ(y)→ 0 asy → ∞ and

1

yδ(y)
= 2

d0
P0
(
δ(y)

)→ 0, y → ∞,

so that properties (i) and (ii) in Lemma 3.2 are satisfied. Observe that

yP1
(
δ(y)

)= d0P1(δ(y))

2δ(y)P0(δ(y))
� d0

2
.

Choosey0 � y1 such thatP0(δ(y0))Q0(δ(y0))� d0/2 and such thatδ(y0) < 1. Then esti-
mate (3.9) in Lemma 3.2 is satisfied. The absolute continuity ofδ(y) again follows from
Lemma A.1. Hence, (5.6) gives(

P0(δ(y))

δ(y)
+ 1

|p(δ(y))|
)
δ′(y)= − d0

2y2δ(y)
. (5.7)

It follows from

yP01
(
δ(y)

)
� yδ(y)P0

(
δ(y)

)= d0

2

that assertion (5.3) holds if

∞∫
y0

1

y2δ(y)
dy <∞. (5.8)

Since (5.2) is locally integrable, also

P0(δ)

δ
+ 1

|p(δ)|
is locally integrable. The change of variablesδ = δ(y), (5.7), and local integrability of (5.2
now lead to (5.8). ✷

The functionδ(y) that was constructed in the proof of Lemma 3.2 satisfiesd0/2 �
yP1(δ(y)) � d0 for all y � y0, so thatP1(δ(y)) ∼ 1/y, see (3.12) in the proof o
Lemma 3.2. In this sense it is asymptotically equivalent to the functionδ(y) defined
in (5.4).

The assumptions imposed onp andq to prove the main theorems are rather mild. Mo
over, the inequalities that were used in proving these results have been obtained for|m(iy)|
rather than for Imm(iy). The conclusion is that, even under the more general assump
used in the present paper, the above results actually lead to somewhat stronger
ties for the Titchmarsh–Weyl coefficients associated with Sturm–Liouville problems o
form (4.1) than what is needed for the Kac subclassesN1 of Nevanlinna functions and fo
the existence of generalized Friedrichs extensions.
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6. A lower bound

The method by which Theorems 4.1 and 4.2 were proved also provides a lower
for |m(iy)| whenp(x) is nonnegative. Denote

P02(x)=
x∫

0

P0(t)
2 dt.

Theorem 6.1.Let the functionp be nonnegative, letδ(y) : [y0,∞) → (0,1) be defined
by (5.4), and letδ0 = δ(y0). Then for someC > 0,

∞∫
y0

|m(iy)|
y

dy �C

δ0∫
0

P02(δ)

P0(δ)P1(δ)|p(δ)| dδ. (6.1)

Proof. For a polynomialz2 − az+ c, wherea, c > 0 anda2 − 4c� 0, with the real roots
r1, r2 (> 0) it is easy to check thatc/a <min{r1, r2}. For δ(y) : [y0,∞)→ (0,1) in (5.4)
the quadratic inequality (4.10) is satisfied. Therefore, one obtains the following es
for |m(b, iy)| from below:∣∣m(b, iy)∣∣� (1− c0)

2yP02(δ)

1+ 2(1+ c0)2yP01(δ)
� C1

P02(δ)

1/y + P01(δ)
, δ = δ(y). (6.2)

HereC1 > 0 depends only onc0, 0< c0 < 1. Integration by parts yieldsP1(δ)= δP0(δ)−
P01(δ). Now, taking into account (5.4) one obtains from (6.2) the estimate∣∣m(b, iy)∣∣� C

P02(δ)

P1(δ)+ P01(δ)
= C

P02(δ)

δP0(δ)
, δ = δ(y), (6.3)

whereC > 0 depends only onc0. Hence, one may take the limitb→ ∞ in (6.3) to obtain
the corresponding inequality for|m(iy)|. Therefore, the previous inequality and iden
ties (5.4) and (5.5) lead to

∞∫
y0

|m(iy)|
y

dy �C

∞∫
y0

P02(δ(y))

yδ(y)P0(δ(y))
dy = C

δ0∫
0

P02(δ)

P0(δ)P1(δ)|p(δ)| dδ,

which proves (6.1). ✷
The conditions in Proposition 5.1 are satisfied by a functionp which behaves near

like t1−c for c > 0 or like t| ln t|1+c for c > 1, but they are not satisfied ifp behaves like
t| ln t|1+c for 0< c � 1. This is due to the fact that the present methods give estimate
|m(b, iy)| and not for Imm(b, iy). Using Theorem 6.1 it is shown that indeed ifp behaves
like t| ln t|1+c for 1< c� 2, then|m(b, iy)|/y is not integrable on(y0,∞).

Example 6.1.Letp(t)= t| ln t|1+c, 0< c� 1, for, say, 0< t < 1/2. Then 1/(c| ln t|c) is a
primitive for 1/p, so that 1/p ∈L1(0,1/2). But

δ �→ P02(δ)
(6.4)
P0(δ)P1(δ)|p(δ)|
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c-
is not integrable over(0, δ0) for any δ0 ∈ (0,1/2). Then, according to Theorem 6.1, t
function|m(b, iy)|/y is not integrable on(y0,∞).

Proof. A straightforward calculation gives

P0(δ)= 1

c| lnδ|c , P1(δ)=
δ∫

0

dt

| ln t|1+c , P02(δ)= 1

c2

δ∫
0

dt

| ln t|2c .

Hence, the functionS(δ), defined by (6.4), satisfies

S(δ)= 1

c

∫ δ
0 (1/| ln t|2c) dt

δ| ln δ|c(δ/| lnδ|2c)(∫ δ0 (1/| ln t|1+c) dt (| lnδ|1+c/δ))
.

Next observe that forν > 0 by l’Hôpital’s rule,

lim
δ→0

∫ δ
0 (1/| ln t|ν) dt
δ/| lnδ|ν = lim

δ→0

1

1− ν/| ln δ| = 1.

Hence, asδ → 0,

S(δ)∼ 1

c

1

δ| ln δ|c .
Therefore,S(δ) is not integrable on(0, δ0). ✷

Appendix A

The various functionsδ which were constructed above are absolutely continuous.
fact is a consequence of the following lemma.

Lemma A.1. LetF : [a, b] → [α,β] be a strictly increasing, absolutely continuous bije
tion, where−∞ < a < b < ∞ and −∞ < α < β < ∞. Assume thatF ′(x) exists and
that F ′(x) > 0 almost everywhere on[a, b]. Then the inverse functionF−1 is absolutely
continuous.

In particular, iff ∈L1[a, b] andf > 0 almost everywhere, then the functionF , defined
by

F(x)=
x∫
a

f (t) dt, x ∈ [a, b],

has an absolutely continuous inverseF−1.

Proof. Let N be the subset of[a, b] of Lebesgue measure 0 such thatF ′(x) exists and
F ′(x) > 0 except forx ∈ N . Then(F−1)′(y) exists with 0� (F−1)′(y) < ∞ except for
y ∈ F(N), a set of Lebesgue measure 0. Now one can proceed as follows. The set

E = {
x ∈ [a, b]: (D+F−1)

(
F(x)

)= ∞}⊂N,
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whereD+ denotes the upper-right derivative, clearly has Lebesgue measure 0. B
(18.35)],F−1 is absolutely continuous.

Another, more direct, way to proceed is to use

(F−1)′
(
F(x)

)
F ′(x)= 1, x /∈N.

Due to the change of variables formula for an absolutely continuous transformation a
to integrable functions (see, for instance, [16, Section 26]),

β∫
α

(F−1)′(y) dy =
b∫
a

(F−1)′
(
F(x)

)
F ′(x) dx

=
b∫
a

dx = b− a = F−1(β)− F−1(α).

Here,(F−1)′ is a nonnegative measurable, and hence integrable function. Likewise,

F−1(ξ)=
ξ∫

α

(F−1)′(y) dy + F−1(α), ξ ∈ [α,β],

which shows thatF−1 is absolutely continuous.✷
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