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Abstract: The motion of pore water directly influences mechanical properties of soils, which are 
variable during creep. Accurate description of the evolution of mechanical properties of soils can 
help to reveal the internal behavior of pore water. Based on the idea of using the fractional order to 
reflect mechanical properties of soils, a fractional creep model is proposed by introducing a 
variable-order fractional operator, and realized on a series of creep responses in soft soils. A 
comparative analysis illustrates that the evolution of mechanical properties, shown through the 
simulated results, exactly corresponds to the motion of pore water and the solid skeleton. This 
demonstrates that the proposed variable-order fractional model can be employed to characterize 
the evolution of mechanical properties of and the pore water motion in soft soils during creep. It is 
observed that the fractional order from the proposed model is related to the dissipation rate of pore 
water pressure.     
Key words: variable-order fractional model; fractional order; soil creep; evolution of 
mechanical properties; soft soil     

 

1 Introduction   

The motion of pore water directly influences the mechanical properties of soft soils, 
which are composed of pore water and a solid skeleton. It has long been known that the 
mechanical properties of soft soils change during deformation or loading (Ferry 1980). 
However, until now, the relationship between the evolution of mechanical properties of soils 
and the motion of pore water is still unclear. The main reason is the lack of a suitable method 
to describe the change of soil mechanical properties. In hydraulic engineering and civil 
engineering, creep, which is the tendency of a solid material to move slowly or deform 
permanently under the influence of stresses, is the main mechanical process of soft soils. In 
this paper, we mainly focus on the description of the evolution of mechanical properties of soft 
soils during creep. 

Fractional calculus has been considered one of the best mathematical tools for modeling 
physical responses and has been applied in a number of fields. The use of fractional calculus is 
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motivated in large part by the fact that fewer parameters are required to achieve accurate 
approximation of experimental data. Previously, the creep response has been characterized 
primarily with the Maxwell, Kelvin-Voigt, and standard linear solid models (Ferry 1980) for 
the constitutive relationship. Bagley and Torvik (1983, 1985, 1986) and Koeller (1984) have 
developed models using fractional calculus. Other researchers (Padovan 1987; Shah and Qi 
2010; Libertiaux and Pascon 2010; Lazopoulos 2006; Enelund et al. 1999; Enelund and 
Olsson 1999; Eldred et al. 1996; Gaul et al. 1991) have examined various issues involved in 
the numerical implementation of these sorts of models. Most of the fractional models 
mentioned above are called component models, and are based on a linear combination of 
elements, Hooke springs, and the fractional derivative Abel dashpot. Here, the fractional 
derivative Abel dashpot obeys the following expression: 
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where σ  and ε  are the stress and strain, respectively; E  and θ  are material constants;  
t is time; and α  is the fractional order, with 0 1α≤ ≤ . However, the component model is a 
mathematical model, and it is merely used to describe the mechanical response and does not 
consider the mechanical properties of materials. It is well known that the ideal solid obeys 
Hooke’s law, ( )- ( )t tσ ε , and that Newtonian fluid satisfies Newton’s law of viscosity, 

( )-d ( ) dt t tσ ε . Thus, if we regard the mechanical properties as a spectrum, one end of which 
is pure elasticity, with 0α = , then the other end is pure viscosity, with 1α = . The fractional 
order of Eq. (1) can denote the location of a specific mechanical property on the spectrum, 
which can help us distinguish the mechanical property of materials quantitatively. However, 
we have found that some creep behaviors still cannot be simulated by Eq. (1). The primary 
reason is that the constant fractional order in Eq. (1) implicates the invariability of mechanical 
properties, while in the real world they change during the mechanical process. Therefore, 
representing the evolution of mechanical properties is a challenging issue in physical modeling 
and phenomenological description. 

The concept of fractional order calculus needs to be further generalized by a calculus of 
varying order so that it is applicable to more complex mechanical properties of materials. Up 
to now, a number of variable-order fractional calculus definitions have been proposed 
(Coimbra 2003; Ingman and Suzdalnitsky 2004; Soon et al. 2005), and some of them have 
been applied to many fields such as anomalous diffusion (Sun et al. 2009; Umarov and 
Steinberg 2009), viscoelasticity (Ingman and Suzdalnitsky 2005; Ramirez and Coimbra 2007), 
multifractional Gaussian noises (Sheng et al. 2011), processing of geographical data (Cooper 
and Cowan 2004), and finite impulse response filters (Tseng 2006). However, variable-order 
calculus has not been used to describe the evolution of mechanical properties of soft soils 
during creep. 

In our study, we attempted to describe the evolution of mechanical properties of soft soils 
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through variable order calculus, and then discussed the impact of pore water on the evolution 
of soil mechanical properties. 

2 Variable-order integral operator 

Variable-order fractional integral operator definitions come from either direct extension 
from fractional calculus or generalization from the Laplace or Fourier transform. In the direct 
extension, the constant exponent in the fractional operator is replaced by a function. Lorenzo 
and Hartley (1998) proposed a generalized linear Riemann-Liouville integration operator with 
the form of   

 ( ) ( ) ( ) ( )

( ) ( ) ( )
, 1

0 0
d      0

,

t
tt

t
t

D f t f t
t

α τ
α τ

τ τ α
α τ

−
− −

= >
Γ

 (2) 

where ( ),tα τ  is the fractional order operator, and it may have three different arguments, 
i.e., ( ) ( ),  tα α τ , and ( )tα τ− . Based on the behavior of the operator for different ( )f t  
values, Eq. (2) can be stated as three expressions: 
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where the superscript before the derivative symbol indicates the arguments of ( ),tα τ . Since  
Eqs. (4) and (5) involve the variable of integration within the exponent, they imply memory of the 
fractional order, meaning that past states have a strong effect on the fractional order (Lorenzo and 
Hartley 2002). 

It is known that the current mechanical response of viscoelastic materials depends not only 
on the loading or deformation histories but also the change process of mechanical properties. 
Thus, the variable-order operator definition applied to describing the evolution of a physical 
feature should have the memory of not only the prior history but also the fractional order. We 
therefore used Eq. (5) to characterize mechanical properties of soft soils during creep in     
this study. 

In order to use Eq. (5) conveniently, we discuss this definition for ( )f t c= , where c  is  
a constant: 
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If ( )tα α= , where α  denotes a constant, we can rewrite Eq. (6) as 
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We assume that the fractional order function ( )tα  in Eq. (6) is of a piece-wise constant 
manner, taking the values of 1 2,  ,  ,  nα α α  for 1 1 2 10 ,   ,  ,   n nt t t t t t t t−≤ ≤ ≤< ≤< , 
respectively. Based on Eq. (7), Eq. (6) can also be written as 
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Because Eq. (8) is a discrete form, which is more suitable for numerical approximation and 
fitting of experimental data, we will use it to establish a variable-order fractional creep model in 
the next section.  

3 Establishment of variable-order fractional creep model  
3.1 Variable-order fractional viscoelastic model 

Coimbra (2003), Ingman and Suzdalnitsky (2005), and Soon (2005) presented a 
variable-order fractional viscoelastic model: 
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where Χ  is considered a material parameter. Because the fractional order function is 
involved in the dimension of Χ  in Eq. (9), Χ  has an unclear physical meaning and can be 
influenced by time resolution. Thus, there are some problems in Eq. (9). 

Considering the evolution of mechanical properties during the loading process, the 
modified viscoelastic model (Yin et al. 2013) should be 
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Obviously, Eq. (10) is a direct extension of the constant-order fractional model (Eq. (1)). 

3.2 Variable-order fractional creep model and its parameters 

During creep, ( ) 0t cσ = , where 0c  is a constant and represents the constant stress,   
Eq. (10) may be rewritten as 
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Based on Eq. (8), Eq. (11) may be rewritten as 
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According to Eq. (7), ( ), ktε α  is expressed as 
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After substituting Eq. (13) into Eq. (12), we can obtain 
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Using Eq. (14) for kt t=  and 1kt t −= , and subtracting the second expression from the 
first one, the following equation is obtained 
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When 10 t t< ≤ , Eq. (14) may be written as 
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where 
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. Certainly, Eq. (16) can also be written as 

 ( ) 1ln ln lnt tε η α= +  (17) 

The coefficients η  and 1α  can be obtained by the first several strain-time ( - )tε  
experimental data, whose ln -ln tε  curve can be fitted as a straight line. 

Because strain increases consistently and gradually approaches a fixed value 0ε  in 
plenty of creep processes, we define it as 

 0

0

cE
ε

=   (18) 

The reason for the strain reaching the fixed value is that materials exhibit elasticity during 
creep. As mentioned above, the order corresponding to 0ε  is zero, i.e., 0kα = . Based on 
Eqs. (18) and the definition of η , the coefficient θ  is stated as 
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When the experimental data are substituted into Eq. (15), we can obtain a sequence of 
fractional orders, kα , and the order-time curve. Then, we can determine the evolution of 
mechanical properties of materials on the basis of the relationship between the fractional order 
and the mechanical property. 

4 Evolution of mechanical properties of soft soils during creep  

In this section, we will examine the evolution of mechanical properties of soft soils 
during creep through the variable-order fractional creep model proposed in section 3. 

A series of triaxial creep experiments on soft soils have been performed by Zhou and 
Chen (2006) and Luo (2010). The corresponding experimental data are shown in Fig. 1. In 
order to validate the variable-order fractional creep model, Eq. (12) was used to fit these  
creep tests. 

Fig. 2 shows that some ln -ln tε  curves of the creep test cannot be fitted with a straight 
line, implying that the mechanical property of soils changes with time. Based on the variable- 
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Fig. 1 Simulated -tε curves of soils at different stresses (VO denotes the variable-order fractional model, and 

CO denotes the constant-order model.) 

 
Fig. 2 ln -ln tε curves obtained by experiments at different stresses 

order fractional method mentioned above, the -k tα  curves were obtained, as shown in Fig. 3. 
We observe from Fig. 3 that the fractional order declines with time, and that all the -k tα  
curves have an almost uniform shape. 

    
Fig. 3 Simulated -k tα  curves obtained by variable-order fractional model at different stresses  

It is of interest that the order-time curves in Fig. 3 can be split into three stages: in the 
first stage, the fractional order is close to a constant, the second stage is a mutation stage of the 
fractional order, and in the third stage the fractional order decreases slowly with time and is 
even close to zero. 
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In terms of the relation between the fractional order and the mechanical property, we know 
from Fig. 3 that, during the creep of soft soils, the mechanical property first remains unchanged 
and exhibits a comparatively large viscosity. Then, a sharp decrease of the viscosity in soft soils 
follows, and, finally, the material property changes slowly until the viscosity in soft soils fades 
away. Further analysis is needed to demonstrate the credibility of the information    
mentioned above. 

It is known that soft soils belong to porous media, whose viscosity results from the 
viscous motion of pore water and the viscous response of the solid skeleton (Schapery 1975). 
During the initial period of creep, viscosity mainly comes from the discharge of pore water. 
Thus, the fractional order of the first stage of creep is greater than that of the other two stages. 
When pore water is excreted, the viscous response of the solid skeleton becomes the major 
source of viscosity. Therefore, the viscosity of soft soils shows a sharp drop, which exactly 
corresponds to the mutation stage of the -k tα  curve in Fig. 3. Because the solid skeleton of 
soft soils can only experience a limited and slow deformation, we think that the evolution of 
mechanical properties in the third stage, described by the variable-order fractional creep model, 
is also rational. In short, the comparative analysis of viscous responses and simulated results 
illustrates that the fractional order from the proposed fractional creep model can be employed 
to represent the evolution of mechanical properties. 

The experimental data from Liu et al. (2008) were also fitted using the variable-order 
fractional creep model and the results are shown in Fig. 4. As mentioned above, the 
mechanical properties reflect the pore water behavior. We therefore compared the variations of 
the fractional order obtained by the proposed model and the pore water pressure μ . It is 
observed from Fig. 5 that, according to the dissipation rate of pore water pressure, the -tμ  
curve can be divided into three stages, which correspond to different stages of the -k tα  curve. 
We found that the fractional order is related to the dissipation rate of pore water pressure, and 
that the larger the fractional order is, the faster the change of pore water pressure. When the 
fractional order is very small, the pore water pressure decreases slowly. We should also point 
out that further research is required to quantify the relationship between the fractional order 
and the discharge rate of pore water. 

5 Discussion 

From Fig. 2(a), it is observed that the ln -ln tε  curves for stresses of 25 kPa and 50 kPa 
can be fitted as straight lines, which implies that the corresponding experimental results can be 
simulated using the constant-order fractional creep model. The simulated results of -k tα  
curves obtained by the constant-order fractional model and variable-order fractional model are 
shown in Fig. 6, respectively. It can be observed that when the creep response can be described 
by both the variable-order and constant-order fractional models with sufficiently guaranteed 
precision, the constant fractional order from the constant-order model is at an intermediate point 
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Fig. 4 -tε curve simulated with variable-order          Fig. 5 Comparison between evolution of 

fractional creep model and experimental              mechanical properties and dissipation         
data from Liu (2008) at stress of 80 kPa                  rate of pore water pressure 

between those orders from the variable-order model, which vary slightly during creep. This 
illustrates that the mechanical properties of some soft soils, which can be characterized 
utilizing the constant-order fractional model, are not necessarily fixed but may change slightly 
during creep. 

 
Fig. 6 -k tα  curves obtained by constant-order fractional model and variable-order fractional model 

We need to point out that the focus of our study is on the characterization of the evolution 
of mechanical properties of soils rather than on requiring fewer parameters to fit experimental 
data. We believe that using a simple function to fit the order-time curve may hide the real 
process of the evolution of mechanical properties of materials. 

6 Conclusions 

In order to describe the evolution of mechanical properties of soft soils during creep, we 
presented a variable-order fractional creep model, in which the fractional order was expected 
to represent the mechanical property of soils. The proposed model was realized on the creep 
response of some soft soils. The simulated results show that the evolution of mechanical 
characteristics can be divided into three stages. A comparative analysis illustrates that the 
evolution of mechanical properties, shown by the simulated results, exactly corresponds to the 
motions of pore water and the solid skeleton. This demonstrates that the proposed 
variable-order fractional model can be employed to characterize the evolution of the 
mechanical properties of soft soils during creep. We observed that the fractional order from the 
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proposed model is related to the dissipation rate of pore water pressure, and that the larger the 
order is, the faster the dissipation of pore water pressure. 
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