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Abstract

The genomes of many species are dominated by short sequences repeated consecutively

called tandem repeats. An understanding of the biological mechanisms that create and extend

tandem repeats would be facilitated by reconstructing the history of duplication events that

generated the tandem repeats. This paper explores the computational problem of

reconstructing the duplication history of a tandem repeat. Specifically, the problem of

reconstructing the minimum-cost duplication history is proved to be NP-hard even if the

lengths and boundaries for the duplication events are fixed. When the lengths and boundaries

are fixed, the minimum-cost duplication history can actually be represented by a tree. A non-

trivial extension of the tree-alignment algorithms from [Wang et al. (Algorithmica 16 (1996)

302; SIAM J. Comput. 30 (1) (2000) 283)] gives a polynomial time approximation scheme

(PTAS) for this special case. Experiments on more than 9000 tandem repeats from human

chromosomes 1 and 22 demonstrate that our PTAS generates less costly histories in acceptable

time than other heuristic methods. We also note that our PTAS works for any metric space.

Therefore, our algorithm is also a PTAS for constructing a minimum Steiner tree (MST) when

the order of all the regular nodes on the output Steiner tree is known.
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1. The tandem repeat history problem

It is estimated that over 10% of the human genome, the totality of human genetic
information, consists of tandemly repeated sequences. In some other species,
tandemly repeated sequences can even dominate the whole genome. For example, in
the kangaroo rat (Dipodomys ordii) more than half of the genome consists of three
tandemly repeated sequences: AAG (2.4 billions repetitions), TTAGGG (2.2 billion
repetitions) and ACACAGCGGG (1.2 billion repetitions) [14].

An instance of a human tandem repeat appears below (Genbank4 accession
number 10120313):

CCTCCTCCTCCACCTCCTCCTCCTCCTCCTCCTCCTCCGCCTTCTCATCCTCCTCCACTT

CCTCCTCCTCCTCCTCCTCCCCTTCTCATCCTCCTCCTCTTCATCTACCC

This tandem repeat consists of 35 approximate copies of the pattern sequence CCT.
Tandem repeats differ from other repeated genomic elements such as short

interspersed elements (SINEs) which do not necessarily occur in tandem (i.e.
consecutively). Tandem repeats vary greatly in the pattern sequence and the number
of repeats [10] and are often approximate in the sense that the pattern sequence is not
always repeated exactly.

The high variability among individuals in the number of repeated elements in a
tandem repeat is the basis of DNA fingerprinting [6,7], which is a technique for
identification of individuals using DNA. In fact, the American Federal Bureau of
Investigation (FBI) has developed a database called CODIS that identifies convicted
felons based on variability within tandem repeats. Variability within tandem repeat
sequences is also linked to several genetic diseases including spinobulbar muscular

atrophy, fragile X mental retardation, myotonic dystrophy and Huntington’s disease.
(See [10, p. 29l] for references.)

Since the initial discovery of tandemly repeated elements [15], many theories on
the biological mechanisms that create and extend tandem repeats have been
proposed including slipped-strand mispairing, unequal sister-chromatid exchange and
unequal genetic recombination during meiosis (see [1, p. 45] for details). With the
completion of the human genome project, and many other genome sequencing
projects, scientists will be in possession of the raw data needed to investigate the
biological mechanisms of tandem repeat creation and extension. Due to the vast
quantities of genomic data to be analyzed, computational tools are required to
explore these data.

In this paper, we examine the problem of reconstructing the history of duplication
events producing a tandem repeat. Consider the duplication history presented in
Fig. 1. In Fig. 1, the sequence of duplication events that result in the tandem repeat
(bottom sequence) is depicted by a sequence of trapezoids. The top of each trapezoid
underlines the parent sequence that is duplicated and the bottom of each trapezoid
overscores the child sequences produced. Hence, through a series of duplication
events the ancestral sequence (top) is extended to the tandem repeat. Notice that
duplication events have the following complexities:

* Duplication is not exact. The children may not be exact copies of the parent
due to biological units mutation, insertion, and/or deletion.

* Duplication can occur anywhere along the parent sequence. That is, the
boundaries of the duplication vary.

4Access to Genbank is available from the NCBI web page: http://www.ncbi.nlm.nih.gov/.
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* The length of the parent sequence in each duplication event can be any integral
multiple of the basic pattern size.

Informally, the Tandem Repeat History Problem (TRH) is to reconstruct the
history of duplication events that generated a known tandem repeat. Formally, we
utilize the definitions introduced by Benson and Dong [1] for consistency: Let S be a
tandem repeat consisting of n approximate copies S1;S2;y;Sn: Through a multiple
sequence alignment, we assume that each Si is a string of length m over the alphabet
S ¼ fA; C; G; T;Fg; where—indicates a gap in the alignment. Such a multiple
sequence alignment can be obtained from S using tools such as the Tandem Repeats

Finder [2]. Correspondingly, we assume that S is a string of length nm over S: A
contraction of S is the replacement of a length 2pm substring of S by a new substring
of length pm; where p is a positive integer. The contraction can be viewed as the
opposite of a tandem duplication and can begin anywhere along the length of S: For
example,

yACGGTAGATACGCGy

is contracted to

yACGGTACGCGy

by merging consecutive substrings GGTA and GATA. A contraction cost function
assigns a cost to every contraction. This function typically depends on the length and
similarity of the substrings being merged. For the purposes of this paper the
contraction cost function used will be the sum of edit distances between the parent
substring and the two child substrings.

Tandem Repeat History (TRH)
Instance: A string S ¼ S1S2?Sn; where S1;S2;y;Sn are length m strings over

alphabet fA; C; G; T;�g and come from a multiple sequence alignment of the copies of
a tandem repeat; A contraction cost function.

Objective: Find a series of contractions that reduce S to an ancestral sequence of
length m and have the minimum cost.

Due to the complexities of TRH as listed in the above, the authors of [1] also
studied a restricted version of the problem. In that restricted version, all duplication
events must have length exactly m and can only begin at positions 1;m þ 1;y; and
ðn � 1Þm þ 1 in S: We call this restriction with fixed lengths and boundaries the
Restricted Tandem Repeat History (RTRH) problem. In the RTRH problem
the duplication history of a tandem repeat can be conveniently represented by a
duplication tree as depicted in Fig. 2. In this example, the tandem repeat sequence is
ATCTTCCTACGTACATTGGTAGGT, which is obtained by reading the leaf sequences from
left to right. It is generated from the ancestral sequence ACCT in five duplication

Fig. 1. The duplication history of a tandem repeat.
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events (each internal node of the tree represents a duplication event where the parent
sequence is duplicated to produce two child sequences).

For ease of presentation, the sequence labeling with node v of the duplication tree
T is denoted lT ðvÞ: The cost cðeÞ of an edge e ¼ ðu; vÞ in a duplication tree T takes the
edit distance between the two sequences labeling with u and v: The cost of T ; denoted
by cðTÞ; is the sum of the edge costs in T : We give the formal definition of RTRH as
follows:

Restricted Tandem Repeat History (RTRH)
Instance: A string S ¼ S1S2?Sn where S1;S2;y;Sn are length m strings over

alphabet fA; C; G; T;Fg:
Objective: Find an ordered binary tree T where each node is labeled by a length m

sequence over fA; C; G; T;Fg; the leaves are labeled, from left to right, by
S1;S2;y;Sn; respectively, and cðTÞ is minimized.

For the reason that an understanding of the duplication history of tandem repeats
may lead insights into the biological processes that generate tandem repeats [4,5,8,9]
(See [1, p. 45]), there is a need to analyze the duplication histories for all tandem
repeats within entire genomes. Such a study requires the development of accurate
and efficient computational techniques for recovering the duplication histories.

2. Previous results and our contributions

Benson et al. [1] developed greedy algorithms Greedy-TRHist for TRH and
Greedy-TRHist-Restricted for RTRH. Both of them look for the contraction of
minimum cost at each round, implement the contraction found. The difference
between them is that the unrestricted algorithm permits duplications to occur
anywhere along the length of the tandem repeat and the lengths of the duplications
can be any integral multiple of the length of the basic pattern. Greedy-Trhist runs
in time Oðmn3Þ and Greedy-TRHist-Restricted runs in time Oðmn2Þ; where m is
the length of the ancestral sequence and mn is the length of the tandem repeat.
Unfortunately, neither Greedy-TRHist nor Greedy-TRHist-Restricted is
guaranteed to produce a history with provable accuracy with respect to the optimal
history. Nonetheless, Benson et al. demonstrated by a simulation study that
Greedy-TRHist-Restricted typically produces a significantly better duplication
tree than the approximation algorithms based on minimum order spanning tree,
which guarantee a performance ratio of 2.

It is noteworthy that RTRH is actually a special Steiner Tree Problem under
edit-distance, where S1;S2;y;Sn are regarded as n regular points. The labels for the
internal nodes in the output duplication tree can be viewed as Steiner points. The

Fig. 2. The duplication history of a restricted tandem repeat.
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specialty lies in that there is one additional constraint to the standard Steiner Tree
Problem that those regular points S1;S2;y; and Sn must be in a left-to-right order
in the output tree.

The Steiner Tree Problem is known to be MAX-SNP hard [3] in an arbitrary
metric space. Therefore, it does not admit a PTAS. On the positive aspect, the
authors of [16] proved that when the topology of the Steiner tree is known,
construction of minimum Steiner trees with the same topology (known as Fixed
Topology Steiner Tree Problem) admits a PTAS. However, this result cannot be
employed directly to solve RTRH since in an instance of RTRH we know only the
order of the nodes but not the topology of the history.

We contribute the following results:

* RTRH is NP-hard. This hardness result establishes that approximation
algorithms and heuristics are in need to reconstruct tandem repeat histories
feasibly.

* RTRH admits a polynomial time approximation scheme (PTAS), which allows
to compute an approximation to the optimal history with arbitrary given
accuracy in polynomial time. The PTAS improves upon the lifted tree method
for Tree Alignment [16].5

* The PTAS for RTRH is implemented to recover the duplication histories for
over 9000 tandem repeats in human chromosomes 1 and 22. The histories
recovered almost always have less cost than histories predicted by other
methods.

* The PTAS for RTRH is more powerful in that it works for any distance that
satisfies Triangular Inequality. Therefore, it is also a PTAS for constructing a
minimum Steiner tree when the order of all the regular nodes on the tree is
known, which strengthens the corresponding result for Fixed Topology
Steiner Tree Problem.

3. RTRH is NP-hard

Obviously, if n is a constant, RTRH can be solved in polynomial time by
exhaustive search. However, in general it is NP-hard as demonstrated below.

Theorem 1. RTRH is NP-hard.

Proof. We reduce the Max Cut problem, known to be NP-hard, to RTRH. When
every node of the given graph has degree at most 3, Max Cut is still NP-hard [11].
Since every degree 1 or 2 node can be made to be degree 3 by attaching some small
constant graphs, it is not hard to prove that Max Cut is NP-hard for regular graphs
of degree 3 (also known as cubic graphs). We begin our reduction from such an
instance of Max Cut. Suppose that G ¼ ðV ;EÞ is an undirected graph, where V ¼
fv1; v2;y; vng and degðviÞ ¼ 3 for every i: We construct the corresponding instance I

of RTRH as follows.
For every vertex viAV ; we construct 6 sequences si;1; si;2;y; si;6: This results in 6n

sequences, s1;1;y; s1;6; s2;1;y; s2;6;y; sn;1;y; sn;6; which are the strings in the

5After the work and the manuscript of the paper had been done, we realized at RECOMB 2001 that

Tang et al. [13] also considered the RTRH problem, motivated by another biological problem, Tandem

Gene Duplication. Independently, they presented a 2-approximation algorithm and claimed that

refinements on their algorithm lead to a PTAS.
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instance I : For every viAV ; each of the six corresponding sequences consists of four
adjoint segments p1; p2; p3; and p4:

1. The first segment p1 consists of n pieces, each piece is of length N1: The ith piece
consists of N1 consecutive 1’s. Except this piece, the other positions are 0’s. This
segment attempts to ensure that any optimal solution to I groups si;1; si;2;ysi;6 in a
single subtree Ti for each i ¼ 1; 2;y; n: This can be achieved by a sufficient large
number N1:

2. The second segment p2 consists of N2 consecutive 1’s for si;1; si;2; si;3; and N2

consecutive 0’s for si;4; si;5; si;6: This segment attempts to ensure that any optimal
solution to I groups si;1; si;2; si;3 in a single subtree T1

i and si;4; si;5; si;6 in another single
subtree T2

i ; for each i:
3. The third segment p3 consists of n pieces again. Each piece has length 8. The ith

piece is 00001111; 11111111; 11110000; 00001111; 00000000; and 11110000; for
si;1; si;2;y; si;6; respectively. At the other positions of this segment, si;1; si;2; si;3 take 0
and si;4; si;5; si;6 take 1. This segment will be used to force T1

i and T2
i to be isomorphic

in an optimal solution to I ; as illustrated later.
4. The construction of the fourth segment p4 is more sophisticated. p4 contains m

positions, corresponding to the m edges. For the jth position, if ej ¼ /vi; vi0S for
some ioi0; then let it be 0; 1; 1; 0; 0; 1 for si;1; si;2;y; si;6; respectively; if ej ¼ /vi; vi0S
for some i > i0; then let it be 1; 0; 0; 1; 1; 0 for si;1; si;2;y; si;6; respectively; if ej is not
adjacent to vi; then let it be 0; 0; 0; 1; 1; 1 for si;1; si;2;y; si;6; respectively. This segment
attempts to develop the relation between the solutions to the instance of Max Cut
and I :

Let N1 ¼ m2n2 and N2 ¼ mn: A moment thinking shows that the attempted tasks
of segments 1 and 2 listed in the above are achieved when setting N1 and N2 as those
large values. The third segment will manage to do the following. Fig. 3 illustrates
four possible topologies of Ti; which are named left-style, right-style, inner-style and
outer-style, respectively. It is easy to verify that when Ti is either left-style or right-
style, the costs contributed by the ith piece of segment p3 in Ti is 16, which is 4 less
than both inner-style and outer-style. Since for any index jai;T1

j has the ith piece of
p3 be all 0’s and T2

j has it be all 1’s, when counting the costs contributed by the ith
piece out of Ti; it does not matter if it is either 0 or 1 at the root of Ti: Thus, it is easy
to check that the third segment will contribute 4 more to the cost if Ti is inner-style
or outer-style. Consider the fourth segment p4: Because the graph is cubic, it is not
hard to verify that there are at most 3 positions which may contribute 1 less to the
total cost when Ti is inner-style or outer-style. Thus, the third segment ensures Ti to
be either left-style or right-style.

Now we come to the last segment. Till now, the topology of an optimal tree is
almost fixed, except that the choice of the styles of Ti ði ¼ 1; 2;y; nÞ; which is forced
to be either left-style or right-style6. At the jth position of the last segment, suppose
ej ¼ /vi; vi0S: For any kefi; i0g; sk;1; sk;2; sk;3 all take 0 and sk;4; sk;5; sk;6 all take 1.
Therefore, the jth position contributes 1 for the cost in Tk; no matter what the root
of Tk takes. Meanwhile, it is easy to verify that at Ti;Ti0 and the path linking Ti and
Ti0 ; the jth position contributes 5 if both Ti and Ti0 are left-style (or right-style) (see
Fig. 4(a)), and contributes 4 if they are in different styles (Fig. 4(b)). Thus, to reduce
the cost, in an optimal solution, we must choose the styles of Ti’s so that as many as
possible pairs of adjacent vertices in G correspond to two trees with different styles.

6Actually, the linkage of the Ti ’s is not fixed yet but it does not affect the total cost.
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It follows that if we respect the choice of the style of Ti to assign vertex vi into
either V1 or V2; the problem of finding a max-cut of graph G is reduced to find a
minimum cost tree of I : This completes the proof. &

Fig. 3. Four possible topologies of the subtree Ti :

Fig. 4. Subtrees Ti and Ti0 ; and the path connecting them. The labels are the values at the positions

corresponding to ej ¼ /vi; vi0S; where ioi0:
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4. PTAS for RTRH

The PTAS for the RTRH problem uses local optimization over subtrees of the
duplication tree to efficiently approximate the minimal duplication tree. This
approach is based upon the concept of an r-lifted tree which was introduced in the
context of the Tree Alignment problem [16]. However, in the Tree Alignment
application, the tree topology is known beforehand whereas here all that is known is
the left to right ordering of the leaves.

Let T be a labeled tree. A node u of T is lifted from a descendant leaf v of u if v and
u have the same sequence label. If a node is not lifted then it is called a free node. By
default a leaf is a lifted node. The lifted nodes of T partition T into edge disjoint
subtrees, which are called the lifted components of T : T is called a r-lifted tree if each
lifted component of T has no more than r leaves (i.e. lifted nodes). Fig. 5 gives an
example of a 3-lifted tree.

Suppose T is a labeled binary tree and lT ðuÞ is the label of a node uAT : For any
distance dðlT ðuÞ; lT ðvÞÞ that satisfies Triangular Inequality, let c0 ðTÞ be the sum of
dðlT ðuÞ; lT ðvÞÞ for all pairs of adjacent nodes u and v: It is proved in [17] that there is
an r-lifted tree T 0 with the same topology and leaf labels as T ; so that c0ðT 0Þ is very
close to c0ðTÞ: More precisely, the following lemma is proved in [17]:

Lemma 2. Let T be labeled binary tree. Assume r ¼ 2t�1 þ 1� q for 0pqo2t�2; then

there is an r-lifted tree T 0 such that T 0 has the same topology and leaf labels, and

satisfies that c0ðT 0Þpð1þ 2t�1

2t�2ðtþ1Þ�q
Þ 	 c0ðTÞ:

In particular, if r ¼ 2t�1 þ 1; then c0ðT 0Þpð1þ 2
tþ1

Þ 	 c0ðTÞ:

Moreover, for any positive integer r; a polynomial time algorithm was provided in
[17] to construct an r-lifted tree satisfying Lemma 2. By Lemma 2, the algorithm is a
PTAS for constructing a minimum-cost labeled tree under a given topology and
given leaf labels. In their algorithm and proof, the authors used a special partitioning
strategy to partition the given topology into lifted components. The partitioning
strategy is an improvement from the one used in a previous paper [16], where the
authors provided similar but weaker results. We note that the algorithms provided in
[16,17] cannot be directly used here since their algorithms require the topology of the
tree being given beforehand. Instead, we provide a new algorithm in this section to
construct a minimum cost r-lifted tree under a given order of the leaves and given
leaf labels. Since our algorithm does not rely on a specific partitioning strategy, we
will be able to use Lemma 2 in the proof the approximation ratio.

Fig. 5. A 3-lifted tree, where the solid nodes are lifted nodes since each of them has the same label as one

of its descendent leaves.
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Let S ¼ S1S2ySn and m be an instance of the RTRH problem with minimum
duplication tree Topt: By Lemma 2, to obtain an approximation of Topt it suffices to
find a minimum cost r-lifted tree T where T becomes an arbitrarily good
approximation of Topt as r increases.

It turns out that for every r-lifted component with lifted nodes v1; v2;y; vr where
v1 is the top lifted node, the optimal local duplication history can be constructed in
polynomial time by trying all possible tree structures and using dynamic
programming to assign the labels of the free nodes, as long as r is a constant.
Denote the minimum cost of this component by cðv1; v2;y; vrÞ:

Therefore, it remains to be shown that all the lifted nodes of a minimum cost r-
lifted tree can be obtained by dynamic programming. Define Dði; k; jÞ; where ipkpj;
to be a minimum cost r-lifted tree such that

* the root of the tree is labeled by Sk and
* the leaves of the tree are labeled, from left to right, by Si;Siþ1;y;Sj :

It follows that the cost of a minimum cost r-lifted tree for S ¼ S1S2ySn where the
root is lifted is min1pkpn Dð1; k; nÞ: We note that a minimum cost r-lifted tree, where
the root is not necessarily lifted, can be obtained by using the input S0 ¼ S0S1S2ySn

where S0 is the sequence XX?X of length m; where X is a symbol not in fA; C; G; T;2g:
It is easy to see that there is a minimum cost r-lifted tree for S0 where the left child of
the root is the leaf labeled by S0 and the root is lifted from S0: Consequently, the cost
of the right subtree of the root is the cost of a minimum cost r-lifted tree for S which
is equal to

min
0pkpn

Dð0; k; nÞ � m:

Therefore, at the rest of this section, we concentrate on constructing the minimum
cost r-lifted tree where the root is a lifted node.

Let T be a minimum cost r-lifted tree for SiSiþ1?Sj where the root v is lifted from
SkðipkpjÞ: It follows that T can be partitioned into two subtrees TL and TR that are
rooted by v: The leaves Si;Siþ1;y;Sl�1 belong to TL and Sl ;Slþ1;y;Sj belong to
TR: See Fig. 6. Observe that the top lifted component of TLðTRÞ may have 1ptor

lifted nodes exclusive of v; denoted by Sk1
;Sk2

;y;Sk1
; respectively. Each Skl

leads a
subtree with leaves Spl�1

;Spl�1þ1;y;Spl
; where the indices pl ’s and kl ’s satisfy

i ¼ p0pk1op1pk2o?pktopt ¼ l:

Obviously the cost of T is the sum of the costs of Tl and Tr: Since T is of the
minimum cost, the labeling of nodes in Tl and Tr must be such that the cost of Tl and
Tr are minimized. Observe that the cost of Tl consists of cðSk;Sk1

;Sk2
;y;Skt

Þ and
the costs of the subtrees led by Sk1

;Sk2
;y;Skt

; respectively. Let f ði;Sk; l � 1Þ be

Fig. 6. The constituents of the cost of an r-lifted tree.
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defined by the minimum of

cðSk;Sk1
;Sk2

;y;Skt
Þ þ

Xt

l¼1

Dðpl�1; kl ; pl � 1Þ

for all 2ptor and i ¼ p0pk1op1pk2o?opt�1pktopt ¼ l: Then f ði;Sk; l � 1Þ is
the minimum cost of Tl : Similarly, f ðl;Sk; jÞ is the minimum cost of Tr:

The above observations justify the following recurrence for Dði; k; jÞ:

Dði; k; jÞ ¼ min
iþ1plpj

½f ði; l � 1;SkÞ þ f ðl; j;SkÞ�:

Dynamic programming can be used to compute the entries Dði; k; jÞ for all
1pipkpj: The detailed algorithm is given as follows:

Algorithm Lifting
Input S1;S2;y;SnASm; an integer r:
Output The minimum cost r-lifted tree with S1;S2;y;Sn as leaves.
1. for each r-element subset { Si1 ;Si2 ;y;Sir } of the n input strings do

Compute cðSi1 ;Si2 ;y;SirÞ:
2. for D from 1 to n do

for i from 1 to n � k do

for k from i to i þ D do

(a) Let j ¼ i þ D� 1:
(b) Let Dði; k; jÞ ¼ miniþ1plpj ½f ði;Sk; l � 1Þ þ f ðl;Sk; jÞ�:

3. Find the minimum Dð1; k; nÞð1pkpnÞ: Reconstruct the r-lifted tree that has this
minimum cost by backtracking.

Theorem 3. Algorithm Lifting is a PTAS for Restricted Tandem Repeat

History.

Proof. Let rX3 be a constant number. First let us estimate the time needed to
compute cðSi1 ;Si2 ;y;Sir Þ: The number of different tree topologies with r leaves is
also a constant number. If the distance between two labels is edit-distance, then for
each topology, a dynamic programming can compute the optimal labels for all the
internal nodes in OðmrÞ time [12]. Therefore, the time to compute cðSi1 ;Si2 ;y;Sir Þ is
bounded by OðmrÞ: However, if the distance between two labels is Hamming-
distance, then it is easy to see that we only need OðmÞ time to compute
cðSi1 ;Si2 ;y;SirÞ: In any case, we only need polynomial time to compute
cðSi1 ;Si2 ;y;SirÞ: Since this time depends on which distance we use, we denote it
by TðrÞ: Then step 1 of the algorithm needs OðnrTðrÞÞ time.

For any given 1pi; l; kpn; there are Oðn2r�3Þ different ðp0;y; pt; k1;y; ktÞ
satisfying the conditions 2ptor and i ¼ p0pk1op1pk2o?opt�1pktopt ¼ l:
Therefore, it takes Oðn2r�3Þ time to compute f ði;Sk; l � 1Þ; provided that
cðSk;Sk1

;Sk2
;y;Skt

Þ and Dðpl�1; kl ; pl � 1Þ have been computed in the former steps.
Similarly, it takes Oðn2r�3Þ time to compute f ðl;Sk; jÞ: Thus, DPði; k; jÞ can be
computed in Oðn 	 n2r�3Þ ¼ Oðn2r�2Þ time. Therefore, step 2 of the algorithm needs
Oðn3 	 n2r�2Þ ¼ Oðn2rþ1Þ time.

The backtracking needs no more time than the dynamic programming. Therefore,
step 3 of the algorithm needs no more time than step 2. Totally, the algorithm needs
Oðn2rþ1 þ nrTðrÞÞ time.
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From the discussion before the algorithm, Algorithm Lifting outputs a
minimum cost r-lifted tree T 0 with the leaf labels S1;S2;y;Sn: By Lemma 2, this
minimum cost r-lifted tree satisfies that

cðT 0Þp 1þ
2t�1

2t�2ðt þ 1Þ � q

� �
	 cðToptÞ;

where r ¼ 2t�1 þ 1� q; 0pqo2t�2; and Topt is the optimal solution for the instance
S1;S2;y;Sn of RTRH. The ratio approaches 1 when r increases. Therefore,
Algorithm Lifting is a PTAS for RTRH. &

Below we give a table of the approximation ratio and the running time for various
values of t and r: In the table TðrÞ denotes the time needed to compute
cðSi1 ;Si2 ;y;SirÞ:

r 3 4 5
t 2 3 3
Ratio 1.67 1.57 1.50
Time Oðn7 þ n3TðrÞÞ Oðn9 þ n4TðrÞÞ Oðn11 þ n5TðrÞÞ

Though the time complexity looks very high, in the next section it is demonstrated
that the dynamic program can be implemented efficiently and applied to large
datasets effectively. This is partly because our analysis of time complexity is not
tight.

5. The PTAS applied to human genome data

In order to compare our PTAS designed for the RTRH problem to Benson and
Dong’s Greedy-TRHist-Restricted algorithm, we implemented both algorithms
and applied them to real examples of tandem repeats. We considered two sources of
tandem repeat data. The first was a database of short tandem repeats maintained by
the (American) National Institute of Standards and publicly available at http://
www.cstl.nist.gov/div831/strbase/. However, we notice that this database
focuses on short tandem repeat sequences which would limit the scope of the
experimental study, and so, we choose not to use this source.

The second source of tandem repeats, that we elected to use in our experimental
study, is the NCBI’s Genbank. From Genbank we selected human chromosomes 1
and 22 which were completely sequenced at the time this experimental study
was conducted. To the chromosomes we applied the publicly available tool Tandem
Repeat Finder [2] (http://c3.biomath.mssm.edu/trf.html) which extracted
all tandem repeats from the raw chromosome data. For efficiency reasons, we
extracted only those tandem repeats with 50 or less repeats and with pattern
sequences of length no more than 100. As a result, 6016 tandem repeats were
obtained from chromosome 1 and 3135 tandem repeats were obtained from
chromosome 22.

The results of the experimental study appear in Figs. 7–9. In particular, for over
75% of the 6016 tandem repeats taken from chromosome 1 the PTAS recovers a less
costly tandem repeat history than Benson’s greedy algorithm whereas Benson’s
greedy algorithm produces a less costly tandem repeat history than the PTAS on less
than 5% of the tandem repeats examined. For chromosome 22, the PTAS
outperforms Benson’s greedy algorithm on 80% of the 3135 tandem repeats
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whereas Benson’s greedy algorithm outperforms the PTAS on less than 5% of the
tandem repeats.

For illustration, an example of a tandem repeat where the PTAS produces
a duplication tree of cost less than Greedy-TRHist-Restricted appears in
Fig. 10.

Fig. 7. Plot of difference between the PTAS and Greedy-TRHist-Restricted on human chromosome 1

versus the number and length of repeats (J: datapoints where difference is 0; þ: datapoints where the

PTAS produces a lower cost tandem repeat history; *: datapoints where Greedy-TRHist-Restricted

produces a lower cost tandem repeat history).

Fig. 8. Plot of difference between the PTAS and Greedy-TRHist-Restricted on human chromosome

22 versus the number and length of repeats (J: datapoints where difference is 0; þ: datapoints where the

PTAS produces a lower cost tandem repeat history; *: datapoints where Greedy-TRHist-Restricted

produces a lower cost tandem repeat history).
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6. Discussion

Although our PTAS is slower than Greedy-TRHist-Restricted, it is sufficiently
efficient to analyze over 9000 tandem repeats in human chromosomes 1 and 22 on a
single CPU workstation when r ¼ 3: In our experiments, we were able to perform the
above analysis in 4 days on a machine running Linux, with 512 Mg RAM and a
Pentium III CPU.

Our PTAS almost always produces tandem repeat histories with smaller cost than
the tandem repeat histories produced by Greedy-TRHist-Restricted. This result
has two benefits. First, the PTAS provides a better upper bound for an instance to
the unrestricted TRH problem than Greedy-TRHist-Restricted (see [1] for
details). Secondly, the PTAS can be used to do local optimization whenever the
history constructed by other methods has a local component that is a tree structure.
From Figs. 7 and 8 we can also see that the PTAS works better when the number of
repeats is greater.

An interesting practical problem that arose during our experiments involved
deciding how to compute distances between tandem repeat patterns. Since we were
working with real data from Genbank our sequences had mutations. As a result the
different repeat patterns in the tandem repeat sequences were not of exactly the same
length as each other. This prevented us from using Benson and Dong’s approach of
comparing patterns character by character. We felt that a character by character
comparison of repeat patterns might sacrifice local optimizations that would be
possible by sequence alignment. As a result, we used sequence alignment with
standard edit distance matrices to compute the distance between two patterns. To
keep the experiments standard, our implementation of Benson’s Greedy algorithm
used the same metric to compute distances.

It is noteworthy that Algorithm Lifting and the analysis do not depend on the
edit-distance. Therefore, Algorithm Lifting is also a PTAS for the minimum

Fig. 9. Summary of the differences between the PTAS and Benson’s greedy algorithm on the chromosome

1 and 22 tandem repeats. Each row indicates on how many tandem repeats that PTAS reduces the costs by

x–y% from the greedy algorithm.

Fig. 10. An example of a tandem repeat where the PTAS duplication tree is less costly than the Greedy-

TRHist-Restricted tree (8 versus 7).
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Steiner tree problem when the order of the leaves is known. This improves the result
in [16] where the authors proved that their algorithm is a PTAS for the minimum
Steiner tree problem when the topology of the Steiner tree is known.
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