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Ten Raa (1984) has shown how arithmetics ideas carry over to distributions over space and can 
be used to solve open, static spatial problems such as the determination of urban equilibrium. 
This article extends the approach to dynamic spatial economics by tracing spatial distributions 
through time. It is shown that the basic ideas of ordinary differential equations carry over to the 
present context, provided that ‘functions’ are spatially distributed valued. The consequent 
differential equations for the distributions are solved. Puu’s (1982) spatial trade cycle model falls 
out as a special case and its associated initial value problem can now be completely solved. 

1. Introduction and summary 

Ten Raa (1984) has shown how arithmetics ideas carry over to distri- 
butions over space and can be used to solve open, static spatial problems 
such a’s the determination of the indirect effects of an expenditure program 
or the determination of urban equilibrium. This article extends the approach 
to dynamic spatial economics. 

The issue of mathematical space selection for a dynamic spatial economy 
is delicate. Such an economy combines dynamic and spatial elements, say 
investment and consumption. Perhaps the most natural commodity space to 
embed those elements is 5Y(R x R2, R”) which consists of n-vector distri- 
butions over time and space jointly, where n is the number of physically 
differentiated commodities. [For an introduction to real-valued distributions 
see Griffel (1981, p. 17).] However, often one traces the development of a 
spatial economy, considered as a whole, through time. This view is parti- 
cularly useful in the study of initial value problems for spatial economies, 
such as the ones posed by Puu (1982) and Beckmann and Puu (1985). Then 
the problems can be solved as if they were textbook initial value problems, 
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the only modification being that values are spatial distributions instead of 
reals. In this case one takes the alternative commodity space of distributions 
over time with values in the space of spatial distributions. The static 
manipulations of spatial distributions by Ten Raa (1984) will thus be 
extended to dynamic analysis. 

An n-vector (spatial) distribution-valued distribution (over time), A, is a 
linear continuous functional from test functions on time (R), f$ Eg(R), to n- 
vector distributions over space (R2), A(@ ELB’(R~, R”). [Test functions are 
defined to be infinitely differentiable and to have compact support, see Griffel 
(1981, p. 16).] The linearity and continuity conditions are captured elegantly 
by the following formal definition: A :9(R) -+9’(R2, R”) is a distribution-valued 
distribution if #++(A(~), $) is a (real-valued) distribution for all $ Ed. 

Summing up, we take as the commodity space either 9’(R x R2,R”), 
consisting of n-vector distributions over time-space, or 9[9(R), 9’(R2, R”)], 
consisting of n-vector spatial distribution-valued distributions over time. It 
may be said that the choice is a matter of convenience. The justification of 
this proposition lies in a deep theorem which states that the space of 
distributions over time-space and the space of spatial distribution-valued 
distributions over time are essentially equal. [More precisely, by the 
Schwartz (1953-1954) kernel theorem there is a bijection between 
A E 9[23(R), 9’(R2, R”)] and (its kernel) a E 9(R x R2, R”). a is obviously 
defined for separable test functions on time-space, say C#J @ $, where 0 is the 
direct tensor product, namely: (a, +@$> = (A(+), $). The deepness of the 
theorem rests in the extension of a to all test functions on time-space. An 
encyclopedic reference is Gel’fand and Vilenkin (1964).] 

To illustrate the use of our commodity framework for the analysis of 
specific models we now briefly discuss the application to the trade cycle 
model of Puu (1982). Detailed analysis is relegated to the remainder of the 
article. 

Puu studies local income, I: and local net export, X, as functions of time, 
t, and location in space, denoted by Euclidean coordinates xi and x2, or 
briefly vector x. He regards X and Y as deviations from equilibrium. Puu 
assumes that income adjusts in proportion to the degree savings fall short of 
net export: 

k=;l(X-oY), 

where cr is the savings quote, 2 denotes adjustment speed and a dot time 
differentiation. He notes that it is usual to relate net exports to income 
‘abroad’ relative to local income. Relative income ‘abroad’ is measured by the 
‘curvature’ of Y that is @Y/ax: + a2Y/&& or the Laplacean, d Y Assuming 
an import propensity p and an adjustment process with the same delay as 
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above, Puu obtains 

2 = l(pLl Y - X). 

The model is reduced by elimination of X: 

This is Puu’s equation of a dynamic spatial economy. The initial value 
conditions are 

Y(x, 0) = Y,(x) and Y(x, 0) = Y,(x). 

We consider the unknown Y as a distribution over time (with spatial 
distribution values) and incorporate the initial value conditions in the 
equation by going to HY where H is the Heavyside function [zero on the 
negatives and one on the positives, Griffel (1981, p. 19)]. Then HY can be 
shown to fulfill 

This is a second-order differential equation in HY 
Reconsidering HY as a distribution over time-space and letting E be the 

fundamental solution of the differential operator, defined by DE =6, we obtain 
by convolution with E, 

HY=[I(l+o)Y,+Y,]*E+Y,*& 

where * denotes the convolution product with respect to space. 
This is the formal solution to the initial value problem. For the concepts 

involved we refer to Gel’fand and Shilov (1964, p. 103), Schwartz (1978) or 
Griffel (1981). The main task that remains to be done is disclosure of E, but 
that will be undertaken after the model is reposed in suitable coordinates in 
the next section. Section 3 offers the mathematics of the incorporation of 
initial values in the equation and of the consequent solution. Applications, 
including a detailed analysis of Puu’s model to which non-mathematical 
readers may turn straightaway, are presented in section 4. 

2. Puu’s model in natural coordinates 

To avoid simple but unrealistic boundary conditions, such as constant 
equilibrium on the boundary of a quadratic or circular region, Puu (1982) 
considers trade cycles on the surface of a sphere. I must admit that his 
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approach has grandeur: he takes into account local curvature effects on the 
structure of the equations and signifies indirect effects of disturbances 
resulting from propagation swings around the world. These distinctions may 
be punctuated by brief mention of an analogy to fluid dynamics: Puu’s 
expenditures propagate like a ship. of which the forward movement is 
facilitated by the downward curvature of the ocean, and of which the fairway 
is disturbed by the wake of the ship which extends all the way around the 
world! However subtle, these effects are generally considered distractions 
from the basic analysis of ship movement though. It seems to me that the 
same holds for spatial economics. For example, the reinforcement of a 
Kuwaitian expenditure shock through local trade and income effects propa- 
gating via Iran, Pakistan, . . . , Vietnam, the Pacific, Mexico, the Caribbean, 
various African and Arabian countries, and back to Kuwait, may be 
dismissed as a curious by-product of Putt’s rather fancy sphere modelling. 

But if sphere modelling distracts, how else are unrealistic boundary 
conditions avoided? Well, in fluid dynamics one assumes that a ship in the 
ocean feels no boundary effects at all and the Euclidean coordinates in which 
the equations are put are assumed to extend into infinity. In other words, 
one simply considers the case in which there is no spatial boundary at all. 

Now Puu’s equations are expressed in Euclidean coordinates. Thus an 
analysis of the basic equations in the Euclidean plane itself would constitute 
a valid rejoinder to Puu’s outline of spherical trade cycles. As Puu (p. 3) 
himself implies, such an analysis is not easy. Yet we shall face the challenge. 
The purpose of this article is to solve Puu’s equations in the Euclidean plane 
for completely general initial conditions. Our approach will be powerful and 
bear on general spatial initial value problems that are linear in time. 

Puu studies local income, E: and local net export, X, as functions of time, 
t, and location in space, denoted by Euclidean coordinates xi and x2, or 
briefly vector x. He regards X and Y as deviations from equilibrium. 

Puu assumes that income adjusts in proportion to the degree savings fall 
short of net export: 

F=A(X-CrY), (1) 

where (r is the savings quote, A denotes adjustment speed and dot time 
differentiation. 

Puu notes that it is usual to relate net exports to income ‘abroad relative 
to local income. Relative income ‘abroad’ is measured by the curvature of I: 
that is a’Y/axf + a2 Y/ax& or the Laplacean, d I: Assuming an import 
propensity p and an adjustment process with the same delay as above, Puu 
obtains 

k=A(pdY-X). (2) 
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The model is complete. Puu summarizes it through elimination of X: 

Y+n(l +fr)k+ErY=+tY (3) 

This is the Puu equation of a dynamic spatial economy. 
As Puu notes, his equation is of the wave type. To solve it, however, we 

must know more about the structure. The first result of our paper is that 
Puu’s equation is essentially the Klein-Gordon equation, 

(Cl +m2)f=0 (4) 

with 0 =“--A, the wave operator, and m=$(l --CT)/ Jp, the mass parameter. 
The Klein-Gordon equation occurs in quantum mechanics where it 

governs relativistic waves for particles with mass m. We have now come 
across it in spatial economics. The only modification is that the mass is now 
purely imaginary (proportional to i = J- 1). Note that the modulus of the 
mass equals half the propensity to consume, 1-0, over the square root of 
the import propensity, I(. 

Proposition I. The Puu equation (3) is equivalent to the Klein-Gordon 
equation (4), by the change of variable dejned by 

f(x, t) = Y(X, t/A Jp) et” +a)‘2~p~t. 

ProoJ: 

Y(x,~/A J~)=f(X,t)e-[(‘+““2J”” or Y(x,t)=f(x,~~t)e-~I”+““. 

Therefore, 

F(x, t) = A&j(x, Lfit)e-tn(l ++ --+A( 1 + cr)f(x, L&t) e-+‘(l +O)’ 

and 

Y(x, t) = A’p-F(x, l&t) e- +n(1 +“)t --$A(1 -I- o)n&J(x, Afit) e-+lti +Ojf 

--+A( 1 + a)l&f(x, A&t) e-32(1 ++ 

+$12( 1 + f~)~f(x, l&it) e-@(l +OJt. 

(3) becomes, upon substitution of the f-expressions for Y Y and y and 
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division by L2p e-incl +@, 

y-~j+!!$f+yz”f-!!L$f+;f=df or 
P 

i.e., (4). In the same way, (4) becomes, upon substitution of f, (3). Q.E.D. 

The change of variable in Proposition 1 consists of compounding interest 
at a rate (1 + a)/2,/~ and choosing a time unit of ~JP. These economic 
devices merely affect time; spatial variables remain essentially the same. In 
particular, initial values for f and Y coincide: 

j-(x, 0) = Y(x, 0) = Y,(x). (5) 

Here Y,(x) is a prescribed initial income distribution over space. The initial 
conditions are completed by a prescription of the trade picture at time zero: 

X(x, 0) =X,(x). 

By (1) we know the equivalent initial conditions for Y and Y And by the 
change of variable in Proposition 1 we know the initial conditions for f and 
i i.e., (5) and, say, 

Ax, 0) = fl(X). (6) 

In fact, the proof of Proposition 1 and (1) show that 

1 
flb~=~JjP(x,o)=Jjr l CXdx) -own 

The question is how income evolves from fO at an initial speed fi under 
Puu’s law (3). In other words, the issue is initial value problem (4), (5), (6). 

3. Initial value problems 

The usual approach to initial value problems for wave type equations is 
the method of spherical means. This method is ad hoc and, in particular, 
breaks down when the equation becomes of the heat type by lowering the 
order of reaction over time as described by Puu (1982, pp. l-2). Economic 
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processes can be either wave or heat like, the precise nature depending on 
the specification of the laws that govern the dynamics. This matter is 
discussed by Beckmann (1970, 1971), Beckmann and Puu (1985), and Ten 
Raa (1986). To circumvent the problem, we now approach spatial dynamics 
in a way that is robust with respect to the specification of the laws through 
the development of a unified analysis of initial value problems. 

To fix ideas we begin considering the ordinary initial value problem for a 
twice locally summably differentiable function, f (or, equivalently, an ab- 
solutely continuously differentiable function, f) with a differential operator 

D=a,+a,’ +a,-=a,+a,$+a&: 

Df=O on R,, (7) 

f (0) =fo, (8) 

A crucial step of the analysis is the incorporation of the initial data, (8)-(9), 
in the eq. (7). This is done by going from f to Hf where H is the Heavyside 
function which is defined to be 1 on R, and 0 elsewhere [Griffel (1981, 
p. 19)]. Clearly, it suffices to find Hf: Its equation is given by 

Proposkion 2. If twice locally summably differentiable f filjills (7), (8), (9), 
then Hf fulfills 

where 6 is the Dirac measure [unit point mass at the origin, see Grijjfel (1981, 
p. 17)-J. In fact, 

i/ Hf=(a,f,+a,f,)*E+a,f,*~‘, 

where E is the fundamental solution of D [Griffel(1981, p. 42)]. 

Corollary. Since the fundamental solution is defined by DE =6, the first part 
of the proposition demonstrates that it is given by E = Hf with f the solution to 
the case of (7), (8), (9) in which f0 = a; 1 and a, = 0 (for the Jirst-order 
equation) or f. =0 and fi = a; ’ (f or t h e second-order equation). The use of the 
proposition here is justified by noting that this solution f is twice locally 
summably dtfferentiable, by the theory of ordinary difherential equations, which 
also establishes existence and uniqueness. 
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Proof of Proposition 2. D(Hf) = a,Hf + a,(Hf) * + az(Hf)“. By the product 
rule, (Hf) * =Sf(O) +Hi as f is a fortiori locally summably differentiable and 
I?=8 by Griffel (1981, p. 23). Applying the rule once more, (Hf)” = $f(O) + 
sf(O) +H% as f is locally summably differentiable. Substituting and re- 
arranging, D(Hf) =a,Hf+a,Hj‘+a,H~+a,Sf(O) +a,62(0) +a,Sf(O). Since 

a,Hf = Hu,f (10) 

(similarly for the second and third terms), 

(similarly for the third term) and 

(11) 

(12) 

(similarly for the last two terms), we have 

BY (7) (8), (9) Wf) =(cfo + cf# + 408. D can be interpreted as a distri- 
bution (namely a,6 + aIs + a,&) that applies through the convolution product: 
D * (Hf) = (aIf0 + a&)6 + a,&?. Commuting and multiplying through with 
E in the sense of convolutions, (Hf) * D * E =(a& +uzfl)S * E f u2f06 * E. 
[For the convolution product see Gel’fand and Shilov (1964, p. 103).] But 
the fundamental solution fulfills D * E = 6 and this is the unit element in the 
convolution algebra, by which also 

u&6 * E =a,&. E, (13) 

and 

u2fo~*E=u2focbd (14) 

which can be written out analogous to (13). Therefore, 

Hf=(u,f,+u,f,) *E+azfo*k Q.E.D. 

Thus we have found f on R,. The result is in perfect agreement with the 
textbook solution. Our formulation, however, lends itself to the treatment of 
spatial initial value problems. 

Take the heat equation [Treves (1975)]. The basic idea is to adopt the just 
developed view point of ordinary differential equations by letting f n- 
dimensional spatially valued and Ui ‘coefficients’ which map spatial distri- 
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butions to themselves. Specifically, f(t) is a distribution on R”, (a,,a,,a,) 
equals (-A, JO), and fi is free since the ‘ordinary’ differential equation is of 
first order. Let us try heuristically to find the solution by analogy to 
Proposition 2, i.e., Hf = (a,& + a&) * E + a& * ri. Consider the first term on 
the right-hand side. The ‘coefficient’ is a spatial distribution. E is also a 
distribution. The ordinary product is not meaningful [Griffel (1981, p. 15)], 
but the proof of Proposition 2 suggests we should employ the convolution 
product instead. Consistency of dimensions requires the convolution product 
to be taken with respect to (geographical) space only. Thus we obtain 

Hf=(u,f,+u,f,)*E+u,f,*8. 

Substituting the ‘coefficients’, (a,, a,, az) = ( -A, LO), the solution reduces to 

~f=fo *E. 

Substituting the well-known fundamental heat solution for E [Treves (1975)], 
we find 

(Hf)(t) =fo * (47tt)“l’exp 
( > 

- !$ H(r). 

This coincides precisely with the well-documented solution to the initial 
value problem for the heat equation [Treves (1975)-J. Consequently, spatializ- 
ation of Proposition 2 seems promising. It will be undertaken rightaway. 

Proposition 3. Let a,, a, and u2 continuously and linearly map spatial 
distributions to themselves, and let 

d d2 
D=u,+u,&+u,~. 

If sputiully distributed valued function f of time is twice locally summubly 
differentiable and fulfills (7), (a), (9) with fO and fi now’ spatial distributions, 
then Hf fulfills 

Wf 1 =(u,fo + uzfiP + uzfd 

In fact, 

Hf=hf,+u,fJ*E+u,f,*& 

where E is the fundamental solution of D. 
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Remark. Hf is a--function of time. By Schwartz (1978) it can be reconsidered 
as a generalized function or distribution on time. Then D(Hf) is also a well- 
defined distribution on time with spatially distributed values. And so is the 
right-hand side of the equation for D(Hf). For example, the first term, a&6, 
is the distribution on time that is concentrated in the origin and assigns (to a 
test function that is 1 in the origin) value a,&. The second equation in the 
statement of Proposition 3 presents Hf as a distribution on time and space 
jointly with real values; the convolution product is taken, as in the heat 
example, with respect to space only. The alternative interpretation of Hf as 
a distribution on time with spatially distributed values versus a real-valued 
distribution on time and space jointly, are consistent by the kernel theorem 
of Schwartz (1953-1954). This is one element of the proof which is outlined 
next:For full mathematical detail the reader is referred to Ten Raa (1985), in 
compliance with editorial policy. 

Outline of proof of Proposition 3. f is a differentiable (spatially distributed 
valued) function, but Hf is not. To subject the latter to D, we must associate 
a distribution with it. The association has to be injective to derive the 
equation for Hf as a function of t, in the last part of the proposition. This is 
done in 

Lemma 1. Locally summable functions with spatially distributed values can be 
mapped into distributions with spatially distributed values. 

The construction of the associated mapping with spatially distributed 
values is straightforward. The only difficult part of the proof of Lemma 1 is 
to establish the distributional requirement that the mapping is continuous in 
the sense of Schwartz (1978). This is done in two steps. First, it is shown to 
be lower semicontinuous in test functions with support in a fixed compact set 
using Fatou’s lemma [Rudin (1964, p. 246)]. Second, this is shown to imply 
continuity by means of Baire’s lemma [Kolmogorov and Fomin ’ (1970, 
P- 601. 

The application of D to Hf in the sense of distribution-valued distri- 
butions yields 

Lemma 2. Let aO, a, and a2 be as in the statement of Proposition 3. Then; in 
the sense of distributions, 

a,(Hf)” = HaJ+ a,f(O)d + a&O)& 
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The notation does not show that Hf is taken in the sense of distribution- 
valued distributions and, therefore, is sloppy. The full proof takes away 
confusion [Ten Raa (1985)]. g’(R2) is reflexive [Schwartz (1978, p. 75)]. This 
fact is used to show the first equality and a,(Hf)’ =(aIHf)‘. 

The right-hand side is rewritten using the first equality and the product 
rule. By linearity and continuity, the coefficients can be pulled outside the 
brackets [Schwartz (1978, p. 74)] to obtain the right-hand side of the second 
equality. Differentiating through and repeating arguments, the last equality of 
Lemma 2 is obtained. 

Adding up the equalities of Lemma 2 and substituting (7), (8) (9), the 
equation for Hf is established in the sense of distribution-valued distri- 
butions. To convolute through with the fundamental solution of D, we must 
associate a real-valued distribution on joint time-space. The association has 
to be injective to derive the equation for Hf as a function of t. This is done 
in 

Lemma 3. Distributions with spatially distributed values can be mapped into 
real-valued distributions on time-space. Moreover, the time derivative [Ten Raa 
(1985)] is mapped into the partial derivative with respect to time. 

The first part of this lemma is a corollary to the kernel theorem of 
Schwartz (1953-1954) and the second part is established on the product 
space of time and space test functions which is dense in the joint test space. 
An encyclopedic reference is Gel’fand and Vilenkin (1964). 

Applying Lemma 3 and convoluting through, the solution to the equation 
for Hf is established in the sense of real-valued distributions on time-space. 
By injectivity it holds in the sense of distribution-valued distributions and in 
the sense of functions of time, respectively. This completes the outline of the 
proof of Proposition 3. 

4. Applications 

Before applying Proposition 3 to the initial value problem (4), (5), (6) that 
describes Putt’s dynamic spatial economy, we first consider a simpler 
example, namely the wave equation. The example is interesting. The wave 
equation is usually not solved by our unified method, but by use of spherical 
means. This method is ad hoc and hinders analysis of initial spatial value 
problems that is robust with respect to the specification of the ‘coefficients’ in 
the equation, or, at a deeper level, the laws that govern the economy. The 
subsequent analysis overcomes this and, in particular, serves as model for the 
solution of problem (4), (5), (6). 

The wave equation reads of=0 with IJ =*.-A. Hence the coefhcients are 
(a,,, a,, a,) =(-A, 0,l). Proposition 3’s differentiability condition on f is fulfilled 
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according to Treves’ (1975, p. 105) Fourier analysis. [In the case at hand, 
with zero right-hand side, f is in fact infinitely differentiable by Treves (1966, 
p. 456). The above weaker differentiability condition, however, remains 
sufficient for non-zero right-hand sides, as Ten Raa (1985, appendix) shows. 
In other words, the present argument is more robust with respect to driving 
forces.] As before, let the initial values be f(x,O)=fJx),‘and &x,0) =fi(x). 
Take x E R3, the traditional three dimensional space. Proposition 3 yields 

Hf=ft *E+fo*& 

where E is the fundamental solution of 0, i.e., s(t --llx11)/47111xll [Treves 
(1975)]. Substituting, the first term of the solution becomes, employing 
spherical coordinates r and 51 about x, 

with M,,, defined as the spherical average about x at radius t. The second 
term becomes, repeating the use of spherical coordinates, 

In sum, 

This result, however quickly established, coincides precisely with the solution 
obtained by the ad hoc method of spherical means. 

Return to the initial value problem of this paper, (4), (5), (6). The 
coefficients become (a,, a,, a2) = (m2 - A, 0,l). The differentiability condition 
on f is fulfilled just as with the wave equation. Now x E R2. Proposition 3 
yields 
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where E is the fundamental solution of 0 +m2. According to Treves (1975, 
p. 671, 

E=p~o(-m2)‘a-+ 
(t2 -11x11”)“-” 

22p+lr(p+ l)T(p+#’ 
llxlls t (and 0 for other x). 

By the proof of Proposition 1 it follows that 

Recall that (7) yields fi =(X,-oY,)/,/p and (5) that Jo= Y,. Elimination of 
fi and f0 yields 

Hy(x,t)=e-+m+@’ 

(a2pt2-((x(/2)p-+ 
22p+qp+ l)f(p+& 

with 0 5 l/xl] 5 Afit, and zero elsewhere. By (l), using shorthand, 
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=~-1e-;a(l+a)t[-312(1+a)] {[y+$-g]*z] 

+e -+a(1 +a)1 

K 

x0-0x3 KTmIJP+GIJP 

OT+ 1 

a Y, a2 - *c Xt+2i$ at2 > 1 
=e - *a(1 + u)t 

ii 
-;(1+fJ)X*+f3~ 

=e -+n(l+o)t 
i[ 

(*+$+5c$.j$% ;+-3L$ $1 

* f (1 -o)2 
p=o [ 1 p?[-+ (A2pt2 -llxjj2)P-+ 4P 22p+iqp+ 1)&J++) I 

with 05 (Ix\\ SA&t, and zero elsewhere. 
In the solution for Y(x, t), consider the elementary example with a=0.2, 

~=0.16, A=24 X0=,/,& and Y,=O. Then 

y(x, t)=e-+’ 2 n-* (t2- JJx((2)p-+ 
p=o 22p+1r(p+ l)qp++) 

and 

X(x,tj=e- 

-ze-3 
( > i-1 pro& 

(t2-/XI12)p-+ 
-5 22p+lr(p+ l)T(p+#) 

Note that Y is the fundamental solution, E, with purely imaginary mass and 
tempered by e . -$t The income distribution at each period (1 through 5) is 
plotted (figs. 1 through 5; note that the scales differ). They are lined up, along 
with intermediate plots (for each subperiod of 0.2), in fig. 6 where time runs 
to the right and distance sticks out in forward direction. For each distri- 
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PER IOD 1 

I I I I I I I I 
“00 “80 1.60 2.&O 3.20 4.00 L.80 5.60 

DISTANCE 

Fig. 1 

PERIOD 2 

I I I I I 
2.40 3-20 4.00 4.80 5.60 

DISTANCE 

Fig. 2 
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PERIOD 3 

DISTANCE 
Fig. 3 

PERIOD 4 

DISTANCE 

Fig. 4 
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PERIOD 5 

DISrANCE 

Fig. 5 

Fig. 6 
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bution, total. income can be found easily: 

d y(x,t)dx,e-@ f n-+ Sb@2-IIXl12)P-idX 
p=o 22p+lr(p+ l)T(p+$ 

=e 
271 PO (t2 - r2)p-S-r dr 

22p+1r(p+ l)T(p+$ 

=e 
--It A 

z 7cz 
m -(t2-r2)p+t Ib/(p++) 

,zo 22p+1r(p+ l)T(p+$) 

t2Pf' 

=e -1q.$ 2 

p=o(p+$)22p+1r(p+ l)T(p+$))’ 

For low periods it is small. Then it reaches a peak at an intermediate point 
of time and eventually it peters out again. The evolution is given in fig. 7. 

Fig. I 
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Summing through time we get the grand total of income, 

545 

Here 

%e-:lt2P+ldt=-~~t2P+ld(e-at)=#2p+1)j:e-”tt2pdt 
0 

=(~)2(2p+1)2p~e-3tt2p-1dr= e-e 

0 

=($2P+1(2~+1)!7e-~tdr 
0 

=(+)-+2(2p+ l)!, 

so that the grand total of income reduces to 

7+ f 
($)2p+2(2p + l)! (2p+ l)! 

P=O(P+$)22P+1qp+ l)T(p+$) =h+pzo(2P+ I)3 2p+1r(p+ l)T(p+$) 

..=&f f (2PY 
p=o 32pfZ r(P + lY(P + 9 * 

Since the initial exports ,shock is JO.16 = 0.4, the total exports multiplier for 
this instance of Puu’s economy amounts to 

(2PY 
1on+pzo32”+2r(p+ l)T(p+$) - - 1.685, 

where the evaluation is numerical. 
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