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Backtesting Value-at-Risk Models: A Multivariate

Approach

Cristina Danciulescu
Indiana University Bloomington

This draft, April 3rd, 2010

Abstract

The purpose of this paper is to develop a new and simple backtesting procedure that ex-
tends the previous work into the multivariate framework. We propose to use the multivariate
Portmanteau statistic of Ljung-Box type to jointly test for the absence of autocorrelations and
cross-correlations in the vector of hits sequences for different positions, business lines or financial
institutions. Simulation exercises illustrate that this shift to a multivariate hits dimension delivers
a test that increases significantly the power of the traditional backtesting methods in capturing
systemic risk: the building up of positive and significant hits cross-correlations which translates
into simultaneous realization of large losses at several business lines or banks. Our multivariate
procedure is addressing also an operational risk issue. The proposed technique provides a simple
solution to the Value-at-Risk(VaR) estimates aggregation problem: the institution’s global VaR
measure being either smaller or larger than the sum of individual trading lines’ VaRs leading to
the institution either under- or over- risk exposure by maintaining excessively high or low capital
levels. An application using Profit and Loss and VaR data collected from two international major
banks illustrates how our proposed testing approach performs in a realistic environment. Results
from experiments we conducted using banks’ data suggest that the proposed multivariate testing
procedure is a more powerful tool in detecting systemic risk if it is combined with multivariate
risk modeling i.e. if covariances are modeled in the VaR forecasts.
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Systemic Risk, Operational Risk.
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1 Introduction

Trading accounts of large financial institutions have grown very rapidly and became progressively

more complex. Nowadays, their global portfolios contain several thousands positions with thousands

of market risk factors as for example interest rates, equity, exchange rates, over-the-counter derivatives,

commodity prices, etc.3 In this context, in order to properly manage market risks, major trading banks

developed risk measurement models that aggregate these risks in current positions. For assessing risk,

these models employed a standard risk metric, Value-at-Risk (VaR), which is the amount lost on a

portfolio or investment with a given small probability over a fixed period of time. In statistical terms,

VaR is a quantile measure which, at a given confidence level α, describes the loss that can occur due

to the exposure to the market risks over a given time period. The popularity of this measure among

practitioners was due to its conceptual simplicity: the summary of many complex bad outcomes in a

single monetary account.

From the regulation side, VaR models have been sanctioned by the Basel Committee in 1996 for

determining the market risk capital requirements through the internal models. The measure was

motivated by the proliferation of the so-called off-balance-sheet products in the banking sector in

early ’90, and the necessity to find and implement risk measures that could potentially allow proper

risk management for these new products. Since then, VaR has become the standard measure for the

financial market risk. Regulations stipulate that estimates are to be calculated for a 99 percent lower

critical value of the bank’s aggregate trading Profit and Losses (P&L) with a one-day horizon. The

forecasts provide a lower bound on aggregate trading P&L that should not be breached more than 1

day in 100.

The daily VaR estimates are maintained by the banks for the purpose of forecast evaluation or

“backtesting”. The backtesting procedure is the standard assessment of VaR models consisting in esti-

mating ex-post the precision of the VaR forecasts. Regulatory authorities require that VaR estimates

be calculated with the same risk model used for internal measurement of trading risk. Regulation does

not recommend any particular backtesting procedure, though the choice of the validation technique

is a key issue for the financial institutions risk management and the financial stability in general.

Traditional backtesting methods consider only univariate VaR sequences either for individual trad-

ing lines or for the financial institution global portfolio. The current practice to obtain such a global

VaR measure is by estimating VaRs for each portfolio or trading line, then sum all trading lines’

VaRs.4 This practice is employed due to the infeasibility of using structural models to accurately

3Berkovitz and O’Brien (2007) documented using daily U.S. bank data that banks’ trading positions are complex
and affected by non-standard risk factors, frequently rebalanced, and very different across banks.

4Perignon& Smith (2008 b) reports that banks routinely disclose their aggregate firm-level VaRs and an increas-
ing number of banks started recently disclosing individual VaRs for each broad risk category: equity, interest rate,
commodity, credit spread, foreign exchange, etc.
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measure the joint distribution of all market risk factors, as well as the relationships among the risk

factors and trading positions. Large banks deal on the regular basis with a very large number of

positions/risk factors and they need to generate daily forecasts.5 However the problem with such

aggregation, as showed in Artzner et al. (1999) with examples in McNeil et. al (2005), is that the

subadditivity property fails to hold for the VaR measure when the assets making up the positions’

portfolios have skewed distributions, a situation that can occur when there are defaultable bonds or

options in the portfolios.6 7On the other hand, the solution proposed by Artzner et al. (1999) to

subadditivity property failure, Expected Shortfall risk measure(ES), is difficult to backtest in practice.
8

The purpose of this paper is to propose the implementation of a new and simple multivariate VaR

backtesting technique able to overcome the VaRs aggregation problem. We propose to implement a

multivariate backtesting procedure applied at once to hits collected from several subgroups of positions

or trading lines, where a hit or a violation corresponds to a situation in which ex-post portfolio

returns are lower than VaR forecasts. More precisely, we implement a Multivariate Portmanteau

test statistic of Ljung-Box type applied to hits collected from several business lines. Our proposed

backtesting procedure has the advantage of exploiting a larger information set being able to capture

potential business lines’ contagion or commonality in risks without the need to resort on a large and

infeasible structural risk model. The method allows all the relationships among portfolios or trading

lines to be tested jointly where joint testing is consistent with the notion that spillovers are the

impact of global news on each market. Moreover, the proposed multivariate testing technique is easy

applicable from the practitioners’ point of view. This paper shows that this shift to a multivariate hits

dimension delivers a test that increases the power of the traditional backtesting methods in assessing

the accuracy of VaR forecasts in the presence of systemic risk where systemic risk should be understood

as the building up of positive and significant hits cross-correlations which translates into simultaneous

realization of large losses at several business lines or banks. From the operational risk point of view,

the multivariate procedure makes an accurate assessment of the market risks the financial institution

is exposed by avoiding under- or over-risk exposure and hence maintaining excessively high or low

capital levels due to the trading lines VaRs’ subadditivity property failure. Instead of adding ex-ante

5Andersen, Bollerslev, Christoffersen and Diebold (2007) documented that the size and complexity of banks trading
positions make parametric VaR methods hard to implement in practice. As many banks report to be dealing with
thousands of risk factors, they choose not to attempt to estimate time-varying volatilities and covariances for the risk
factors.

6Perignon& Smith (2008 b) found that the aggregate banks’ VaR may be either less or more than the sum of their
individual VaRs, hence individual VaRs are informative. In support to their findings, authors cite Deutsche Bank
2005 annual report: “Simply adding the Value-at-Risk figures of the individual risk classes to arrive at an aggregate
Value-at-Risk measure would imply the assumption that the losses in all risk categories occur simultaneously”.

7As mentioned by Perignon& Smith (2008 b), Basel Committe on Banking Supervision (1996) allows banks to have
discretion in recognizing empirical correlations within and across broad risk categories when computing their aggregate
VaR.

8ES is defined as the mean exceedance given the VaR is violated. Backtesting ES is difficult due to the fact that a
breach of VaR is rare in practice.
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business lines’ VaRs (percentiles) in order to obtain the bank’s global VaR measure the test is adding

ex-post hits’ autocovariances and cross-covariances which are expectations hence additive. Therefore

the multivariate testing procedure coupled with multivariate risk modeling might offer an optimal

solution to the operational risk problem.

We firstly introduce our proposed procedure formally, then investigate the size and power perfor-

mances of the proposed method through several Monte Carlo simulations. We set up several simulation

designs in order to investigate extensively the test’s power performance when spillovers among time

series occur through various channels.9 Under the specifications and parameterizations considered

in this paper, we found that the multivariate testing procedure is more powerful than its univariate

counterpart when cross-correlations among trading lines’ hits are positive and significant which is the

case of a systemic risk development. We also found that the univariate test is more powerful than

the multivariate one when cross-correlations among trading lines’ hits are negative which, from the

operational risk point of view, suggests that the univariate test creates an under-risk exposure hence

a loss in profitability for the financial institution by not taking into consideration potential negative

co-movements or risk diversification among its trading lines.

An application using data from two major international banks investigated how our proposed

backtesting method performs in a realistic environment. From the application part we found that,

using a multivariate generalized autoregressive conditional heteroscedastic model, BEKK (1,1,1)10

to obtain the banks’ VaR forecasts instead of the Historical Simulation method that the two banks

used, the multivariate test becomes significant at 1% and 5% over certain trading days rolling windows

while the univariate tests do not. The result is consistent with our Monte Carlo findings which implied

that the multivariate procedure is more powerful than the univariate one in assessing the underlying

market risks a bank is exposed when markets co-move. On the other hand, with our proposed more

powerful multivariate backtesting technique it is still hard to reject Historical Simulation obtained VaR

forecasts. This might be due to the restriction this technique imposes on the estimation. Historical

Simulation method assumes that assets are independent and identically distributed (i.i.d.) which is

not the case of the financial data. We also found that, tough we have an identified event in the data,

the 2001 9/11 event, the multivariate test does not become significant over the respective trading

window or year but two years latter. Our intuition for getting this result is that this might be due

to the presence of forward looking components as for example bonds in trading lines’ portfolios. Our

work in progress is addressing this issue by incorporating market expectations or market sentiment in

risk models.

An important consequence of using our backtesting approach is that capital requirements will be

9We refer to time series spillovers as defined in Hong et al. (2009), i.e. the risk of a given asset depends on the
previous risk of other asset. For more details regarding time series spillovers and their connections with the time series
covariances and correlations see Hong et al. (2009).

10See Engle and Kroner (1995) for model description. Multivariate GARCH models specify the risk of one asset as
depending dynamically on its own past risk as well as the past risk of other assets.
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increased only when the dependencies/positive correlations among trading lines, hence hits sequences,

become sufficiently important to be taken into consideration given a certain coverage probability α.

Therefore trading floor risk managers will not have to face excessive idle capital problem, on one hand,

while, on the other hand, they will have higher chance to avoid huge losses and failures due to the

systemic risk. In our set up, trading line managers get an informational advantage that comes from

exploiting the multivariate framework.

The remainder of this paper is organized as following. In Section 2 we describe the environment

and introduce our multivariate proposed backtesting procedure. The size and the power performance

of the test are examined by Monte Carlo simulations in Section 3. Section 4 applies our test to real

banks’ data, and Section 5 concludes.

2 A multivariate approach to backtesting procedure: General
theory

This section defines the VaR problem in the context of a financial institution with multiple business

lines or trading positions, formulates the institution forecast evaluation problem, then introduces

formally the proposed multivariate backtesting method.

2.1 Financial institution with multiple trading lines: Environment descrip-
tion

Within the lines of Escanciano and Olmo (2009 a& b), we formalize the financial institution with

multiple trading lines problem as follows. Suppose that Y ht , is the h-th trading line return time series

of a certain financial institution where h = 1, ...,H, and assume that at time t− 1 the information set

of this trading line h is given by Wh
t−1. Let Fht−1 be the σ-algebra generated by Wh

t−1. Assuming that

the conditional distribution of Y ht given Wh
t−1, Fht (., θh0 ,W

h
t−1), is continuous with a strictly increasing

cumulative distribution function (c.d.f.), we define the α-th conditional VaR of Y ht given Wh
t−1 as the

Fht−1 measurable function qhα(Wh
t−1) satisfying the equation:

P (Y ht ≤ qhα(Wh
t−1)|Wh

t−1) = α, (1)

almost surely (a.s.), α ∈ (0, 1), ∀t ∈ Z.

In this paper we will consider only parametric VaR models, meaning that qhα(Wh
t−1) = mh

α(Wh
t−1, θ

h
0 )

a.s. for some θh0 ∈ Θ, where mh
α(Wh

t−1, θ
h
0 ) is the parametric VaR model, i.e. the inverse of

Fht (., θh0 ,W
h
t−1) at the level of α with respect to the first argument.

Equation (1) implies that the parametric VaR for trading line h, mh
α(Wh

t−1, θ
h), is correctly specified

if and only if

E[Iht,α(θh0 )|Wh
t−1] = α, (2)
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a.s. for some θh0 ∈ Θ where Iht,α = 1(Y ht ≤ mh
α(Wh

t−1, θ
h)), and 1(A) is the indicator function, i.e.

1(A) = 1 if the event A occurs and 0 otherwise. The variable Iht,α is called “hit” or “exceedance”.

2.2 Forecast evaluation problem

Traditional backtesting procedures are based on testing some implications of equation (2) for the

individual trading lines, h, or bank’s aggregate portfolio. If we define the financial institution aggregate

returns as Yt =
∑H
h=1 Y

h
t and the aggregate α-conditional VaR of Yt given Wt−1, the institution

information set, as qα(Wt−1) =
∑H
h=1 q

h
α(Wh

t−1), then equation (2) for the aggregates becomes

E[It,α(θ0)|Wt−1] = α, (3)

a.s. for some θ0 ∈ Θ, where It,α = 1(
∑H
h=1 Y

h
t ≤

∑H
h=1 q

h
α(Wh

t−1)). However, since subadditivity

property does not necessarily hold for VaR measure, as already investigated by Artzner et al. (1999),

this type of aggregation is problematic.

The most popular implication of the equation (2) for the univariate case is explored by Christof-

fersen (1998) which is

E[It,α(θ0)|Ĩt,α(θ0)] = α, (4)

a.s. for some θ0, where Ĩt,α(θ0) = (It−1,α(θ0), It−2,α(θ0)...)′.

This condition is equivalent to {It,α(θ0)} being independent and identical distributed (i.i.d.)

Bernoulli random variable with parameter α, (Ber(α)). Therefore, the problem of evaluating the

accuracy of VaR forecasts can be reduced to the problem of examining the unconditional coverage

and independence properties of the univariate hits sequence, {It,α(θ0)}. Testing for E[It,α(θ0)] = α is

called the unconditional backtesting and testing for {It,α(θ0)} being i.i.d. is called the independence

test.

Berkovitz et al. (2006) outlined an unified approach of VaR assessment based on the fact that

the unconditional coverage and independence hypotheses are both consequences of the martingale

difference hypothesis for the hits process. They noted that the univariate de-meaned hits sequence,

{It,α(θ0)−α}, forms a martingale difference sequence (m.d.s), and this implies that the hits sequence

is uncorrelated at all leads and lags. On this basis, authors proposed a univariate test of the Ljung-Box

type that considers the nullity of the first K autocorrelations for the hits sequence.

If we denote by γk the univariate hits sequence autocorrelation of order k, then to test if γk = 0

holds for the first K autocorrelations, we have

LB(K) = T (T + 2)

K∑
k=1

γ̂2
k

T − k
(5)

which is, under some regularity condition11, asymptotically a χ2 with K degrees of freedom as T →∞.

11See Box and Pierce (1970) and Ljung and Box (1978).
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This procedure, which considers the empirical autocorrelation of order K for the hits sequence, is

an improvement compared with Christoffersen (1998) test which only considered the autocorrelation

of order one.

Our paper’s main assumption is that, if past hits from one trading line h is in the information

set of the others, i.e. Iht−k ∈ W i
t−1, ∀k ≥ 1, ∀i, ∀h, i 6= h, with i, h ∈ H and Iit,α = 1(Y it ≤

mi
α(W i

t−1, θ
i)), then the joint VaRs validation for the H trading lines using a multivariate version

of the Ljung-Box test statistic will significantly improve the validity checking of the models. More

specifically, if instead of using for testing univariate hits sequences from each trading line h ∈ H

or the bank’s aggregate hits sequence, we stack all hits sequences in an H dimensional vector, i.e.

It,α(θ0) = [I1
t,α(θ1

0), ..., IHt,α(θH0 )]′, then the problem of evaluating the accuracy of VaR forecasts imply

testing jointly for the unconditional coverage and independence properties of the H dimensional hits

vector, It,α(θ0), for some θ0 = [θ1
0, ..., θ

H
0 ]′ ∈ Θ. The unconditional coverage test implies testing for

E[It,α(θ0)] = α, where α here denotes the vector of coverage probabilities. The independence property

implies checking, in addition to the previous used tests, for

E[(Iit,α(θi0)− α)(Iht−k,α(θh0 )− α)] = 0, (6)

∀i = 1, ...,H, ∀h = 1, ...,H where i 6= h and k = 1, ...,K lags.

In other words, this means that, if each trading line V aRh = mh
α(Wh

t−1, θ
h) model is correctly

specified, and there is no commonality in risks, then past observations from a business line hits

sequence should not help predict future violations of itself or violations for other business lines.

2.3 Backtesting procedure using a multivariate Portmanteau test statistic

Our proposed backtesting method is based on the multivariate Ljung-Box statistic. The test takes

into consideration both the autocorrelations and cross-correlations among hits sequences for trading

lines under consideration or supervision. The procedure is a joint test for the unconditional coverage

and independence properties using violations from several business lines at once, hence exploiting a

larger information set than the previous methods.

Let It,α(θ0) be the H-dimensional vector of the trading lines violations series as defined in the pre-

vious section. If we denote by Γk the population covariance matrix, Γk = E[(It,α(θ0)−α)(It−k,α(θ0)−
α)
′
], and by D an HxH diagonal matrix with standard deviation of Iht,α(θh0 ) on the main diagonal,

then by analogy with the univariate case, we can define the lag-k cross-correlation matrix of It,α(θ0)

as

ρk = D−1ΓkD
−1, (7)

with its (i, h)-th element given by

ρihk =
γihk√
γii0 γ

hh
0

, (8)
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∀i = 1, ...H, ∀h = 1, ...H trading lines, and ∀k = 1, ...K lags. When k = 0 we get the contemporaneous

cross-correlation matrix of It,α(θ0).

The multivariate testing procedure is carried out in out-of-sample exercises. The forecast environ-

ment can be described as following. Let Yt = {Y 1
t , ..., Y

H
t }, and suppose that {Yt, Z

′

t}Tt=1 of size T ≥ 1

are used to evaluate V aR = {V aR1, ..., V aRH} forecasts, where here Zt denotes other economic and

financial variables from the information set. Assuming that the first R observations in each trad-

ing line sample are used to estimate the parameters for the respective VaR model, then it remains

P = T − R predictions to be evaluated for each h trading line. West and McCracken (1998) consid-

ered, for example, three forecasting schemes: recursive, rolling, and fixed. They differ depending on

how θh0 are estimated. In the recursive scheme, the estimators θ̂ht are computed with all the sample

available up to time t. In the rolling scheme only the last R values of the series are used to estimate

θ̂ht , which means that they are constructed from the sample s = t−R + 1, ..., T . In the fixed scheme

the parameters are not updated when new observations become available, meaning that θ̂ht = θ̂hR, for

all t, R ≤ t ≤ T . In the current set up we will only consider the fixed forecasting scheme for the sake

of computational simplicity.

In the backtesting context, the ih-th element of the hits covariance matrix at different lags k is

defined as

ξihP,k = Cov(Iit,α(θi0), Iht−k,α(θh0 )), k ≥ 1, (9)

∀i = 1, ...H, ∀h = 1, ...H, and can be consistently estimated under E[Iit,α(θi0)] = α, E[Iht,α(θh0 )] = α

by

γihP,k =
1

P − k

T∑
t=R+k+1

[(Iit,α(θi0)− α)(Iht−k,α(θh0 )− α)], k ≥ 1. (10)

Analogously, the sample covariance of the multivariate hits vector is given by

ΓP,k =
1

P − k

T∑
t=R+k+1

[(It,α(θ0)− α)(It−k,α(θ0)− α)], k ≥ 1. (11)

Alternatively, if we use the hits correlation matrix for testing, its ih-th element is defined in our

backtesting framework as

ρihP,k =
γihP,k√
γiiP,0γ

hh
P,0

. (12)

The univariate Ljung-Box statistic applied to univariate hits sequences can be generalized to the

multivariate case. The implementation of the multivariate test consists, for a given lag length K ≥ 1,

in testing the null hypothesis corresponding to the joint nullity for correlation of order k in the hits

vector It(θ0), where k = 1, ...,K.
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The null hypothesis of the test statistic is

H0 : ρ1 = ρ2 = ... = ρK = 0, (13)

and the alternative hypothesis is

H1 : ρk 6= 0, (14)

for some k = 1, 2, ...,K.

However, in practice tests for (13) are based on estimates of the relevant parameters such as

γ̂ihP,k =
1

P − k

T∑
t=R+k+1

[(Iit,α(θ̂it−1)− α)(Iht−k,α(θ̂ht−k−1)− α)], (15)

Γ̂P,k =
1

P − k

T∑
t=R+k+1

[(It,α(θ̂t−1)− α)(It−k,α(θ̂t−k)− α)], (16)

respectively

ρ̂ihP,k =
γ̂ihP,k√
γ̂iiP,0γ̂

hh
P,0

. (17)

The proposed multivariate Portmanteau statistic tests for the absence of autocorrelations and

cross-correlations between pairwise hits sequences, jointly, and in terms of sample covariance matrices

takes the following form:

QH(K) = P (P + 2)

K∑
k=1

1

P − k
tr(Γ̂P,kΓ̂−1

P,0Γ̂P,kΓ̂−1
P,0), (18)

where P is the size of the predicted interval, K ≥ 1 is the considered lag length, H is the dimension

of the vector of hits considered, It(θ), and tr(A) is the trace of the matrix A.

In terms of sample correlation matrices, the test statistic QH(K) can, also, be written as

QH(K) = P (P + 2)

K∑
k=1

1

P − k
r̂
′

P,k(ρ̂−1
P,0 ⊗ ρ̂

−1
P,0)r̂

′

P,k, (19)

where r̂P,k = vec(ρ̂
′

P,k), vec(A) denotes the vectorization of the matrix A and ⊗ denotes Kronecker

product operation.

The modification of this test statistic recommended for samples of moderate size by Li and McLeod

is given by

Q∗H(K) = P

K∑
k=1

1

P − k
r̂
′

P,k(ρ̂−1
P,0 ⊗ ρ̂

−1
P,0)r̂

′

P,k +
H2K(K + 1)

2P
, (20)

which is asymptotically equivalent to QH(K).
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2.4 Asymptotic theory

In order to derive the limit distribution for our proposed test under the null hypothesis, we need

to impose a set of regularity conditions on the data generating process for Y ht , the VaR models

mh
α(Wh

t−1, θ
h), the parameter estimators θ̂ht , and the ratio between the size of the estimation sample,

R, versus the prediction sample, P , π = P
R . A detailed description of the conditions and assumptions

we make can be found in the Appendix.

The derivation of the limit distribution of the test is complicated by the fact that we do not

observe the true parameters value, θh0 , hence we have to estimate them. For the consequences of ig-

noring parameter uncertainty and the ways to correct the limit distributions of the current backtesting

methods in use see Escanciano&Olmo (2008 a&b). Alternatively, one can proceed assuming that the

estimation of θh0 by θ̂ht has no effect on inference as the existing literature assumed with the exception

of Escanciano&Olmo (2009 a&b). Note that this assumption is valid only if the sample size used for

estimating the parameters, R, is much larger than the prediction sample, P . Under this circumstance,

replacing θh0 with θ̂ht has no impact on the limit distribution of the test, QH(K). In this paper, we

derive the limit distribution of QH(K) under this assumption. This assumption greatly simplifies the

construction and implementation of the proposed multivariate test because we do not need to know

the asymptotic expansion of θ̂ht and can choose any
√
T -consistent estimator.

Theorem 1: Under the Assumptions A1-A5 in the Appendix, under H0

QH(K)→d χ
2(KH2), (21)

as T →∞, where K is the lag length and H is the number of trading lines considered.

3 Monte Carlo simulations

In this section we examine the finite sample performance of our proposed test through several Monte

Carlo simulations. The aim of the exercises is to asses the empirical size (probability of incorrectly

rejecting the null hypothesis) and power (probability of rejecting a false null) for the multivariate test.

We used several data generating processes (DGPs) so that we can investigate extensively what are

the potential gains and drawbacks from applying the proposed multivariate testing procedure under

various realistic environments.

In our Monte Carlo experiments we investigate both the influence of the lag order K and out-of-

sample size choices P . For the sake of computational simplicity we report results only for the fixed

forecasting scheme with π = P
R = 0.0512 13, where R is the in-sample size, and P is the out-of-sample

12Our choice value for π is motivated by our assumptions, see the Appendix.
13See, also, Escanciano and Olmo (2009 a) for how different values for π can affect the traditional backtesting
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size to be forecasted. For all simulations we considered the out-of-sample sizes P = 250, 500 for which

the in-sample sizes implied by imposing π = P
R = 0.05 are R = 5000, 10000. The choices for the lag

lengths are K = 1, 5, 10, 15.14

The first Monte Carlo design follows the one proposed by Christoffersen (1998). He modeled the

violations process by a Markov chain with transition probabilities:

Π =

(
p00 p01

p10 p11

)
. (22)

Under the null hypothesis (H0), the violations have a constant conditional mean which implies the

linear restriction p00 = p10 = α. Hence, the probability of having a violation at time t is equal

with α, the coverage rate, no matter the state at t − 1. Under the alternative hypothesis (H1),

pij = P [It,α(θ0) = j|It−1,α(θ0) = i] 6= α. The Markov chain reflects only the existence of a correlation

of order one in the process of hits sequence, It(θ0). This means that the probability of having a

violation (respective not having one) for the current period depends only on the occurrence of a

violation or not for the same level of coverage α in the previous period.

For our multivariate case we generated, under the null, two uncorrelated Markov chains for which

the violations for both have a constant conditional mean which implies the linear restriction p1
00 =

p1
10 = p2

00 = p2
10 = α, where the superscript indicates the chain. Under the alternative hypothesis we

maintained the linear restriction but we generated correlated chains with cross-correlation set at 0.9.

We considered α = 1%, 5% and 10% corresponding to hits sequences with shortfall probabilities or

risk levels of 1%, 5% and 10%.

The Monte Carlo algorithm’s main steps in this design are as following:

1. Generate R+P observations for each h binary (hits) sequence (we will get a matrix of H hits),

2. Implement the proposed multivariate test for the obtained matrix of hits sequences and compare

it with a χ2(H2K),

3. Implement the univariate test for each univariate hits sequence and compare with a χ2(K),

4. Repeat the previous steps for l times and calculate the rejection rates. Rejection rates are

calculated over l = 1000 Monte Carlo trials.

The advantage of considering this design is that estimation effects do not affect the limit distribu-

tion of the tests. The draw back is that it captures only the correlation of order 1.

Table 1 displays simulation results for the size of the multivariate test and its univariate counter-

part. For the size of the test, if the asymptotic distribution is accurate in the sample sizes considered,

the rejection frequencies should be close to the nominal size of the test which we set to be either

procedures’ asymptotic distribution.
14The choices for lag lengths are in line with Chitturi (1974) assumption. The author derived the asymptotic distri-

bution of the multivariate test under the assumption that P � K.
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τ = 5% or τ = 10%. We found that the size of the multivariate test is close to the nominal values

considered of 5% and 10% for the risk levels α = 5% and α = 10%. On the other hand the test is

oversized for α = 1% risk level. This result is not new in the literature. Escanciano and Olmo (2008

a) obtained similar results for their Monte Carlo experiments and they suggested that this problem

may be intrinsic to VaR inferences at low quantile levels and not to the existence of the estimation

risk. This problem is also investigated extensively in Danciulescu (2010 b).

Table 2 shows results for the power simulations under this Monte Carlo design. Our results

illustrate a significant increase in power in moving from the univariate to a multivariate testing

environment. The power of the test is increasing in the out-of-sample size P and decreasing with

the lag length K over all significance and risk levels considered. The latter is expected since all the

correlation is at the first lag.

For our second Monte Carlo exercise we employed Hong et al. (2009) nested GARCH DGP to

simulate returns for h trading lines. We decided to use this DGP since GARCH is the most common

specification for modeling financial returns. In our simulations we considered only H = 2 as the

authors did. Hong et al. (2009) DGP allowed us to disentangle and investigate separately the channels

through which spillovers among the business lines’ returns may occur. In this paper we investigated

only the spillovers that may occur through the time series’ means and variances.

The nested GARCH DGP is specified as following:

Yht = βh1Y1t−1 + βh2Y2t−1 + uht, (23)

uht = σhtεht, (24)

σ2
ht = γh0 + γh1σ

2
ht−1 + γh2u

2
1t−1 + γh3u

2
2t−1, (25)

εht ∼ m.d.s., (26)

We assumed that innovations, εht, are i.i.d tν standardized disturbances i.e. εht =
√

ν−2
ν ∗ vht with

vht distributed as a Student-t with ν degrees of freedom for h = 1, 2.

Using Hong et al. (2009) DGP we investigated both the size and the power of the proposed

multivariate test. The values of the parameters are obtained by fitting GARCH models to the banks’

daily returns data we used in the application part of the paper.

We assessed the size of the test under the null (H0) using the following parameter values:

(β11, β12, γ10, γ11, γ12, γ13) = (0, 0, 0.05, 0.88, 0.01, 0), (27)

(β21, β22, γ20, γ21, γ22, γ23) = (0, 0, 0.15, 0.73, 0, 0.1). (28)

The innovation processes, εht, are assumed to follow a Student-t distribution with νh = 5 degrees of

freedom for h = 1, 2. Our choice for the innovations’ distribution and degrees of freedom parametriza-

tion is motivated by Perignon & Smith (2009 a) estimation results. Using data from around the World
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fifty major banks they found that a Student-t distribution with between 5 and 8 degrees of freedom

is the best choice to account for the observed data leptokurtosis.

For this Monte Carlo design, the algorithm’s main steps are as follows:

1. Using Hong et al. (2009) DGP and the true parameter values, generate R+P observations for

the H trading lines,

2. Using the first R (in-sample) observations generated, estimate the parameters of the model by

quasi maximum likelihood method (QMLE),

3. Using the estimated parameters we generate the out-of-sample P observations from univariate

GARCH DGPs,

4. Get the hits sequence for each individual series of financial return generated. We will get a

matrix of H hits (H = 2 in our bivariate case),

5. Implement the proposed multivariate test for the obtained matrix of hits sequences and compare

it with a χ2(H2K),

6. Implement the univariate test for the univariate hits sequence of interest and compare it with

a χ2(K),

7. Repeat the previous steps for l times and calculate the rejection rates.

As in our previous Monte Carlo design we considered l = 1000.

Table 3 shows the results for the size of the test using the above DGP and parametrization. We

found that the multivariate test is slightly over-sized for this specification compared to the nominal

values considered of 5% and 10% for the risk levels α = 5% and α = 10% while the test is undersized

for the risk level α = 1%. As in the previous Monte Carlo design for size we refer to Danciulescu

(2010 b) work as a potential explanation for these size distortions.

Using Hong et al. (2009) DGP with different parameter values we conducted Monte Carlo experi-

ments to compare the empirical powers of the multivariate and univariate methods for rejecting some

alternatives to the null. We employed parameterizations that allowed us to investigate separately the

power of the test when spillovers between financial returns come through their mean (main body of

the distributions) or through their variance (tails of the distributions).

We used the following parameter values to investigate the power of the test under the alternative

(H1) when there are spillovers between returns through their mean:

(β11, β12, γ10, γ11, γ12, γ13) = (0, 0.7, 0.05, 0.88, 0.01, 0), (29)

(β21, β22, γ20, γ21, γ22, γ23) = (0, 0, 0.15, 0.73, 0, 0.1), (30)

and when there are spillovers between returns through their variance:

(β11, β12, γ10, γ11, γ12, γ13) = (0, 0, 0.05, 0.88, 0.01, 0.7), (31)
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(β21, β22, γ20, γ21, γ22, γ23) = (0, 0, 0.15, 0.73, 0, 0.1). (32)

For all cases, the innovations processes εht are assumed to follow a Student-t distribution with νh = 5

degrees of freedom for h = 1, 2.

In tables 4 and 5 we report the rejection probabilities at 5% and 10% significance level for the last

two parameterizations. The simulation results for the power show that in both cases, spillovers between

returns through their mean and variance, we get a significant gain in power for the multivariate test

versus the univariate one for the lag lengths 1, 10 and 15, while at the lag 5 the univariate test is

more powerful than the multivariate one. The power of the test is also increasing in the out-of-sample

size P over all significance levels considered. These findings suggest that the multivariate test is

more powerful in capturing the co-movements (positive and significant cross-correlations) among the

trading lines hits sequences. Also, by capturing the negative movements among trading lines (negative

cross-correlations), our results suggest the multivariate test is a better choice from the operational

risk point of view. Proposed procedure makes an accurate assessment of the market risks the financial

institution avoiding under-risk as well as over-risk exposure and consequently maintaining excessively

high or low capital levels with negative implications as decrease in bank’s profitability or its failure.

The economic intuition of this result is also of interest. A potential explanation of the negative

cross-correlation at lag 5 might be due to the fact that banks might use assets (bonds) with different

maturities for hedging the risk in their portfolios/business lines or different trading strategies. For

example one trading line/bank is shorting the risky assets at day 5 while the other is holding risky

assets longer in its portfolio.

The third Monte Carlo design investigates the power of the multivariate testing procedure using

data generated from a bivariate BEKK process as introduced by Engle and Kroner (1995). This

specification is recommendable for modeling the dynamic correlation structure among different trading

lines (risk categories) as recommended in the Amendment of the Basel Accord (1996).15 Moreover,

BEKK model is a more realistic representation of the financial markets environment with spillovers

among time series that occur through various channels without the possibility to clearly identify them.

In this set up financial returns are modeled as a multivariate stochastic vector process {Yt} with

dimension Hx1 such that E(Yt) = 0. The vector Yt is assumed to be conditionally heteroscedastic:

Yt = M
1/2
t εt, (33)

given the information set Wt−1, where Wt−1 denotes the information set generated by the observed

series {Yt−1} up to and including time t−1. The HxH matrix Mt = [mijt] is the conditional covariance

matrix of Yt, and εt is an i.i.d. vector error process.

The matrix process Mt for the BEKK model has the form:

Mt = A0A
′

0 +

K∑
k=1

q∑
i=1

A
′

kiYt−iY
′

t−iAki +

K∑
k=1

p∑
j=1

B
′

kjMt−jBkj , (34)

15See Perignon& Smith (2008 b).
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where Aki, Bkj , and A0 are HxH parameter matrices, with A0 lower triangular. The decomposition

of the constant term into a product of two triangular matrices is to ensure positive definiteness of Mt.

In our case Yt is a vector of H log-returns corresponding to H trading lines.

Since the number of parameters in a full BEKK model is (p+q)KH2+H(H+1), in order to reduce

the computational burden, we employed in our Monte Carlo simulations a bivariate BEKK(1,1,1),

hence H = 2.

As in the case of Hong et al. (2009) design, the BEKK DGP is parametrized using values that we

got by fitting the model to the banks’ data:

(a0,11, a0,21, a0,22, a1,11, a1,12, a1,21, a1,22, b11, b12, b21, b22) = (14.8511, 0.6318, 1.0809, 0.2525,−0.2308,

−0.3709, 0.0807, 0.3503, 0.6730,−0.4592, 0.3663)

(35)

Innovations are assumed to follow a bivariate Student-t distribution with ν = 5 degrees of freedom,

and the variance-covariance matrix elements σ11 = σ22 = 1 and σ12 = σ21 = 0.4.

The simulation environment follows the same steps and considerations as in the case of Hong et

al. (2009) DGP. The fitted risk model for each generated time series from the BEKK DGP is a

GARCH(1,1).

Table 6 displays the results for this Monte Carlo experiment. Using BEKK design we get similar

results for power as in the Hong et al. (2009) Monte Carlo design.

In summarizing our Monte Carlo results we conclude that our paper contributes to the exiting liter-

ature by showing that in moving to a multivariate backtesting procedure from a univariate method we

get a power improvement in capturing the co-movements (positive cross-correlations) among the trad-

ing lines or financial institutions while avoiding financial institution under-risk exposure by capturing

the negative movements (negative cross-correlations) among her trading lines. Hence the multivariate

technique represents an improvement in testing the accuracy of VaR forecasts.

4 Application

To illustrate how our new proposed backtesting procedure works in a real data environment, we apply

the test to two international major banks’ P&L and VaR data. The sample was made available to us

by Christophe Perignon and Daniel R. Smith, who developed in Perignon& Smith (2009 a) a method

to extract one day-ahead VaRs and daily trading revenues data from the graphs disclosed by the banks.

The authors selected a sample of five large banks from five different countries and collected annual

10-K forms from the SEC-EDGAR website, annual reports from the banks’ websites or hardcopies

from the banks, for the period 1995-2005. They focused on the largest banks since presumably large

banks devote the most resources to computing VaRs. 16

16See Perignon and Smith (2009 a) paper’s Appendix for a detailed description of the data extraction procedure.
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From their sample of five banks we chose for our analysis Bank of America and Credit Suisse First

Boston Bank. In their annual statements the two financial institutions report actual revenues that

are affected by their intraday trades. Banks’ trading revenues are based on position values recorded

at the close of the day and represent the banks’ consolidated trading activities. The usual activities

include trading in interest rate, foreign exchange, equity assets, liabilities, and derivative contracts.

Perignon&Smith (2009 a) reports that, for these two banks, it is not stated explicitly if their trading

revenues are inflated or not by trading fees or commissions, which may create some distortions in

backtesting. The banks’ VaRs are calculated for a one-day-ahead-horizon and a 99% confidence level

for profit and losses (P&L), that is the 1% lower tail of their P&L distributions.

Figure 1 shows the graphs of the daily trading revenues and one day-ahead 99% VaRs for our

selected banks. From the graphs we observe that there are fewer exceptions or days when the actual

loss is greater than the VaR consistent with the one percent coverage probability. Bank of America

had four exceptions and Credit Suisse First Boston bank had six exceptions over the period considered.

Because there are around 1000 observations in the sample, the expected number of exceptions is 10

for both banks. The two banks differ, also, in the magnitude of violations. As one can notice from

figure 1 the magnitude of violations for Credit Suisse First Boston is much higher than the ones for

Bank of America.

Figure 3 plots the violation sequences for the two banks obtained using their reported P&L and

VaRs. The graph suggests that there is at best a weak relationship between the two banks’ violation

sequences. Results for cross correlation between the two banks trading revenue and VaRs displayed

in table 11 supports the inference made using figure 3. The correlation of their daily P&L and VaR is

low. This low correlation may reflect the difference in portfolios’ composition between the two banks.

Tables 9 and 10 present the summary statistics for daily P&L and VaR data for the two banks

under our investigation as reported in Perignon&Smith (2009). From the descriptive statistics one

can notice significant differences in average P&L, standard deviation and kurtosis between the two

banks. The magnitude of trading activity is almost three times larger for Bank of America versus

Credit Suisse First Boston Bank. The average daily P&L for Bank of America was 13.8698 million

dollars while the average daily P&L for Credit Suisse First Boston bank was 5.0318 million dollars.

Trading revenues for both banks are highly volatile with extreme profits and losses, right skewed, and

exhibit ARCH effects. The P&L for Credit Suisse First Boston bank displays excess kurtosis relative

to the normal distribution. The Dickey-Fuller test indicates that both banks’ trading revenues are

stationary. There is also evidence of modest autocorrelation around 5 to 10 % for revenue series of

both banks. The summary statistics for their VaR figures shows that they are strongly autocorrelated.

The methodology used by banks to construct their VaRs is Historical Simulation. Histograms of P&L

and VaRs for the two banks are presented in Figure 4.

We applied our backtesting procedure to the banks’ observed sequences of P&L and VaRs consid-

ering a 250-day moving window. Therefore, with our available data, we repeated the procedure for
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a total of four different periods. That is, for the second period we considered the forecasting period

from P = 251 to P = 500, for the third period from P = 501 to P = 750, and for the last period from

P = 751 to P = 1000.

Table 7 reports statistics for both the multivariate and univariate tests and the number of excee-

dences (Vio) for the four windows. We found no rejections at 1% and 5% either for the multivariate

test or for the univariate one over the windows and lag lengths considered.

We repeated the testing procedures using the observed P&L but with VaR forecasts obtained by

fitting a BEKK (1,1,1) as risk model. To the best of our knowledge this is the first paper to use

a multivariate risk model for obtaining the VaR forecasts. The advantage of using a multivariate

risk model is capturing in VaRs not only business lines or banks’ conditional variances but also their

covariances. Table 8 reports the testing results. We found that for the rolling window P = 501 : 750

the multivariate test is significant at 1% for lags K = 1, 5, 10 while the univariate tests are not. The

total number of violations obtained using BEKK(1,1,1) risk model at 1 % risk level is comparable to

the one obtained using banks’ reported method which is Historical Simulation.

The results obtained from our two exercises have several implications. First, they are consistent

with our Monte Carlo simulations, which found that the multivariate test is more powerful than the

univariate test in capturing co-movements (positive and significant cross-correlations). Second, con-

sistent with Berkovitz et al. (2006) results, we found that it is difficult to reject historical simulation

obtained VaRs even with the multivariate technique and this might be due to their design. Third,

the multivariate testing procedure is a more powerful tool, able to capture the systemic risk if cross-

correlations are modeled in the VaR forecasts. Fourth, multivariate risk modeling combined with

multivariate testing procedures might be the best approach from the operational risk point of view

since financial institutions and regulators would like to avoid over- as well as under-risk exposures.

Multivariate methods are able to capture markets’ or institutions’ co-movements hence avoiding in-

stitutions’ failures at the macro level if systemic risk builds up or a decrease in profitability at the

micro level if the negative correlations among trading lines are not considered. Fifth, the presence of

forward looking components in trading lines’ or banks’ portfolios, as for example bonds, suggests the

incorporation of market expectations or market sentiment in risk models for accurately timing risk

spillovers and contagion periods. As one could notice from table 8, tough the 2001 9/11 event belongs

to the first rolling window, the multivariate test becomes significant over the third rolling window, in

2003.

The economic significance of backtesting methods and VaR forecasts derives from the fact that

results are used to determine the minimum regulatory capital requirements which must be met by

banks to guard against credit and market risks. The Basel Accord stipulates that a bank daily

capital charge must be set at the higher of the previous day’s VaR or the average VaR over the last

60 business days multiplied by a factor, mft, i.e. CRt = mft ∗ max{V aR0.01
t , 1

60

∑60
i=1 V aR

0.01
t−i }.

The multiplicative factor, mft, is determined by the results from backtesting banks’ models on the
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previous T days, where T = 250 in Basel Accord, but mft must not be lower than 3. Basel Accord

imposes penalties in the form of a higher multiplicative factor on banks which use models that lead

to a greater number of violations than would be expected given the specified risk level of 1 %. A high

capital charge is undesirable, other things equal, as it reduces banks’ profitability. Table 12 displays

the penalties imposed for a given number of violations over a 250 trading days period.

Table 13 shows our calculations for the two banks’ mean daily capital charges using the two risk

models to obtain the VaR forecasts. The results for capital charges are comparable for the two risk

modeled. This outcome suggests that employing a dynamic model which accounts for the time varying

assets’ correlation, as for example BEKK, does not lead to higher capital requirements for banks on

one hand, while giving a higher chance to capture potential trading lines commonality in risks (the

case of positive cross-correlations) or avoiding under-risk exposure (the case of negative correlations)

on the other.

Capital requirement calculations revealed also a drawback of the risk models in use which is their

backward looking feature. The lowest capital charges occurred during the period with the highest

number of violations for both banks. This might have happened due to the fact that capital charges

are based only on backtesting results and VaR forecasts from the previous periods in which volatilities

and the number of violations were lower due maybe to more favorable market conditions. This outcome

in particular is very important to be investigated in future research since insufficient capital buffers

to cover the realized losses may lead to banks or financial institutions’ failures.
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5 Conclusion

In this paper we proposed a new backtesting technique that exploits the informational advantage of the

multivariate framework. The test is easy to implement and simulation results conducted over a relevant

number of sample sizes, number of lags and specifications showed that the proposed multivariate

backtesting procedure represents an improvement versus its univariate counterpart in assessing the

accuracy of VaR forecasts. Multivariate testing technique allows all the relationships among trading

lines to be tested jointly revealing a considerable increase in power for cross-market spillovers. Joint

testing is consistent with the notion that spillovers are due to the impact of global news in each market

and use of multivariate data allows analyzing markets’ interactions simultaneously.

An application of our proposed procedure to two major international banks real data confirmed

the Monte Carlo results. Our findings imply that a partial disaggregation and analysis of risk on

classes of risks or trading lines is recommendable to a full financial institution risk aggregation as a

way to capture the complexity of financial linkages.

The results from the application part of the paper revealed, also, a drawback of the risk models

in use, which is their backward looking feature, with important implications for correct calculation

of banks’ capital requirements and identification of the risk spillover periods. Our current work in

progress explores in this direction.
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6 Appendix

ASSUMPTIONS AND MATHEMATICAL PROOFS

ASSUMPTIONS:

Assumptions 1-5 under which Theorem 1 is derived are similar with the ones in Escanciano and

Olmo (2008 a and b).

Let the family of conditional distributions be defined as:

Fx(y) = P (Yt ≤ y|Wt−1 = x), (36)

and let fx(y) be the associated conditional densities. We define the α-mixing coefficients as

α(m) = supn∈Z,B∈Fn,A∈Pn+m
sup|P (A ∩B)− P (A)P (B)|,m ≥ 1 (37)

where the σ-fields Fn and Pn are Fn = σ(Xt, t ≤ n), respectively Pn = σ(Xt, t ≥ n), and Xt =

(Yt, Z
′

t)
′. Mixingness is the property that ensures dependence dies out with horizon.

For each trading line h ∈ H we assume the following:

Assumption 1: {Y ht , Z
′

t}t∈Z are strictly stationary and strong mixing process with mixing coef-

ficients satisfying
∑∞
j=1(α(j))1− 2

d <∞ with d > 2.

Assumption 2: The family of distribution functions {Fhx , x ∈ Rdw} has Lebesque densities

{fhx , x ∈ Rdw} that are uniformly bounded:

supx∈Rdw ,y∈R|fhx (y)| ≤ C (38)

and equicontinuous: for every ε > 0, there exists a δ > 0 such that

supx∈Rdw ,|y−z|≤δ|fhx (y)− fhx (z)| ≤ ε. (39)

Assumption 3: The model mh
α(Wh

t−1, θ
h) is continuously differentiable in θh (a.s.) with deriva-

tives gh(Wh
t−1, θ

h) such that E[supθh∈Θ0
|gh(Wh

t−1, θ
h)|2] < C, for a neighborhood Θ0 of θh0 .

Assumption 4: The parameter space Θ is compact in Rp. The true parameter θh0 belongs to

the interior of Θ. The estimator θ̂ht satisfies the asymptotic expansions θ̂ht − θh0 = Hh(t) + oP (1),
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where Hh(t) are a px1 vector such that Hh(t) = R−1
∑R
s=1 l

h(Y hs ,W
h
s−1, θ

h
0 ) for the fixed forecasting

scheme.

We assume that E[lh(Y hs ,W
h
s−1, θ

h
0 )|Wh

t−1] = 0 a.s., and V h = E[lh(Y hs ,W
h
s−1, θ

h
0 )lh

′
(Y hs ,W

h
s−1, θ

h
0 )|Wh

t−1]

exist and are positive definite.

Moreover, lh(Y ht ,W
h
t−1, θ

h) are continuous (a.s.) in θh in Θ0 and E[supθh∈Θ0
|lh(Y ht ,W

h
t−1, θ

h)|2] ≤
C are small neighborhoods around θh0 .

Assumption 5: R,P →∞ as n→∞, and limn→∞
P
R = π, 0 ≤ π <∞.

PROOF OF THEOREM 1:

We provide a sketch of proof for Theorem 1 using empirical process theory as in Escanciano and

Olmo (2008 a) and a variation of weak convergence theorem as developed in Delgado and Escanciano

(2007).

For notation simplicity we denote, for θh ∈ Θ,

Fht−1(θh) = FhWh
t−1

(mh
α(Wh

t−1, θ
h)), (40)

and

fht−1(θh) = fhWh
t−1

(mh
α(Wh

t−1, θ
h)). (41)

As in Escanciano and Olmo (2008 a) we define the process

Kh
n(c) =

1√
P

n∑
t=R+1

[Iht,α(θh0 + c(t− 1)−1/2)− Fht−1(θh0 + c(t− 1)−1/2)], (42)

indexed by c ∈ CD, where CD = {c ∈ Rp : c ≤ D}, and D > 0 is an arbitrary but fixed constant.

Lemma A1 in Escanciano and Olmo (2008 a) states that, under the Assumptions A1-A5, the

process Kh
n(c) is asymptotically tight with respect to c ∈ CD. Moreover it can be shown that for each

c ∈ CD,

E[|Kh
n(c)−Kh

n(0)|2] = oP (1). (43)

The last equation and the asymptotically tightness of Kh
n(c) imply that if ĉ is bounded in proba-

bility, i.e. ĉ = OP (1), then

|Kh
n(ĉ)−Kh

n(0)| = oP (1). (44)

Next we apply these results with ĉ = maxR≤t≤n
√
t(θ̂ht −θh0 ) where R denotes the in-sample size. We

need to prove that, under the fixed forecasting scheme we considered in this paper, maxR≤t≤n
√
t(θ̂ht −

θh0 ) = OP (1) holds. Since for the fixed forecasting scheme we have

|maxR≤t≤n(

√
t

R
)

R∑
s=1

lh(Y ht ,W
h
t−1, θ

h
0 )| ≤ |( 1√

R
)

R∑
s=1

lh(Y ht ,W
h
t−1, θ

h
0 )| = OP (1), (45)
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then equation (44) holds for ĉ = maxR≤t≤n
√
t(θ̂ht − θh0 ), and hence we have

| 1√
P

n∑
t=R+1

[Iht,α(θ̂ht−1)− Fht−1(θ̂ht−1)]− 1√
P

n∑
t=R+1

[Iht,α(θh0 )− Fht−1(θh0 )]| = oP (1), (46)

where P denotes the out-of-sample size.

This imply the decomposition

1√
P

n∑
t=R+1

[Iht,α(θ̂ht−1)− α] =
1√
P

n∑
t=R+1

[Iht,α(θh0 )− Fht−1(θ̂h0 )] +
1√
P

n∑
t=R+1

[Fht−1(θ̂ht−1)− Fht−1(θh0 )]+

1√
P

n∑
t=R+1

[Fht−1(θh0 )− α] + oP (1).

(47)

Using the Mean Value Theorem, and since expectation and differentiation can be interchanged,

we have

A1n =
1√
P

n∑
t=R+1

{Fht−1(θ̂ht−1)− E[Fht−1(θ̂ht−1)]− Fht−1(θh0 ) + E[Fht−1(θh0 )]} =

1√
P

n∑
t=R+1

{gh
′

α (Wh
t−1, θ̃

h
t−1)fht−1(θ̃ht−1)− E[gh

′

α (Wh
t−1, θ̃

h
t−1)fht−1(θ̃ht−1)]}(θ̂ht−1 − θh0 ),

(48)

where θ̃ht−1 is between θ̂ht−1 and θh0 .

Assumptions A2 and A3 imply that E[supθh∈Θ0
|gh′α (Wh

t−1, θ
h)fh

Wh
t−1

(mh
α(Wh

t−1, θ
h))|] < C. There-

fore by uniform law of large numbers of Jennrich (1969, Theorem 2) and maxR≤t≤n
√
t(θ̂ht − θh0 ) =

OP (1), we have that A1n = oP (1).

Similarly,

1√
P

n∑
t=R+1

{E[Fht−1(θ̂ht−1)]− E[Fht−1(θh0 )]} =
1√
P

n∑
t=R+1

E[gh
′

α (Wh
t−1, θ

h
0 )fht−1(θh0 )](θ̂ht−1 − θh0 )+

1√
P

n∑
t=R+1

{E[gh
′

α (Wh
t−1, θ̃

h
t−1)fht−1(θ̃ht−1)]− E[gh

′

α (Wh
t−1, θ

h
0 )fht−1(θh0 )]}(θ̂ht−1 − θh0 ) = B1n +B2n.

(49)

By uniform law of large numbers and maxR≤t≤n
√
t(θ̂ht − θh0 ) = OP (1), we have that B2n = oP (1)

holds. Hence,

| 1√
P

n∑
t=R+1

[Fht−1(θ̂ht−1)− Fht−1(θh0 )]− E[gh
′

α (Wh
t−1, θ

h
0 )fht−1(θh0 )]

1√
P

n∑
t=R+1

Hh(t− 1)| = oP (1). (50)

s
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In order to proceed with the proof of theorem 1, for each i, h ∈ H, i 6= h, we define de process:

Kih
n,k(c) =

1√
P

n∑
t=R+k+1

{Iit,α[θi0+c(t−1)−1/2]−F it−1[θi0+c(t−1)−1/2]}Iht−k,α[θh0 +c(t−k−1)−1/2], (51)

indexed by c ∈ CD, where CD = {c ∈ Rp : |c| ≤ D}, k ≥ 1, and D > 0 is an arbitrary but fixed

constant.

Applying Lemma A1 from Escanciano and Olmo (2008 a) to the process Kih
n,k(c) and following the

previous arguments we get

√
P − k(ξ̂ihP,k − ξihP,k) =

1√
P − k

n∑
t=R+k+1

[F it−1(θ̂it−1)Iht−k,α(θ̂ht−k−1)− F it−1(θi0)Iht−k,α(θh0 )] + oP (1)

=
1√
P − k

n∑
t=R+k+1

[F it−1(θ̂it−1)Iht−k,α(θ̂ht−k−1)− F it−1(θi0)Iht−k,α(θh0 )+

F it−1(θi0)Iht−k,α(θ̂ht−k−1)− F it−1(θi0)Iht−k,α(θ̂ht−k−1)] + oP (1),

(52)

where ξihk = cov[Iit,α(θi0), Iht−k,α(θh0 )] at different lags k with k ≥ 1, which can be consistently estimated

by ξihPk = 1
P−k

∑n
t=R+k+1[Iit,α(θi0)Iht−k,α(θh0 )− α2].

The previous expression can be rearranged as following

√
P − k(ξ̂ihP,k − ξihP,k) =

1√
P − k

n∑
t=R+k+1

F it−1(θi0)[Iht−k,α(θ̂ht−k−1)− Iht−k,α(θh0 )]+

1√
P − k

n∑
t=R+k+1

Iht−k,α(θ̂ht−k−1)[F it−1(θ̂it−1)− F it−1(θi0)] + oP (1) =

1√
P − k

n∑
t=R+k+1

F it−1(θi0)[Iht−k,α(θ̂ht−k−1)− Iht−k,α(θh0 )]+

1√
P − k

n∑
t=R+k+1

[gi
′

α (W i
t−1, θ̃

i
t−1)f it−1(θ̃it−1)Iht−k,α(θ̂ht−k−1)](θ̂it−1 − θi0) =

C1n + C2n + oP (1),

(53)

where θ̃it−1 is between θ̂it−1 and θi0.

Since F it−1(θi0) = α a.s., the previous results imply that

C1n = αE[gh
′

α (Wh
t−k−1, θ

h
0 )fht−k−1(θh0 )]

1√
P − k

n∑
t=R+k+1

Hh(t− k − 1) + oP (1), (54)

and

|C2n − E[gi
′

α (W i
t−1, θ

i
0)f it−1(θi0)Iht−k,α(θh0 )]

1√
P − k

n∑
t=R+k+1

Hi(t− k − 1)| = oP (1), (55)
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Hence, we proved that

√
P − k(ξ̂ihP,k − ξihP,k) = αE[gh

′

α (Wh
t−k−1, θ

h
0 )fht−k−1(θh0 )]

1√
P − k

n∑
t=R+k+1

Hh(t− k − 1)+

E[gi
′

α (W i
t−1, θ

i
0)f it−1(θi0)Iht−k,α(θj0)]

1√
P − k

n∑
t=R+k+1

Hi(t− k − 1) + oP (1).

(56)

Furthermore we define the following quantities

ξ̂i1P,k =
1√
P − k

n∑
t=R+k+1

[Iit,α(θ̂it−1)− α], (57)

ξ̂h1P,k =
1√
P − k

n∑
t=R+k+1

[Iht−k,α(θ̂ht−k−1)− α], (58)

and, similarly, define ξi1P,k and ξh1P,k with θi0 and θh0 replacing θ̂it−1 and θ̂ht−k−1.

Since

γ̂ihP,k =
1

P − k

n∑
t=k+1

[Iit,α(θ̂it−1)− α][Iht−k,α(θ̂ht−k−1)− α], (59)

this implies that √
P − kγ̂ihP,k =

√
P − kξ̂ihP,k − αξ̂i1P,k − αξ̂h1P,k + 2α2. (60)

The same equality holds for γihP,k, ξihP,k, ξi1P,k, ξh1P,k
√
P − kγihP,k =

√
P − kξihP,k − αξi1P,k − αξh1P,k + 2α2. (61)

Hence we have that

√
P − k(γ̂ihP,k − γihP,k) =

√
P − k(ξ̂ihP,k − ξihP,k)− α(ξ̂i1P,k − ξi1P,k)− α(ξ̂h1P,k − ξh1P,k). (62)

Previous arguments imply that

ξ̂i1P,k − ξi1P,k = E[gi
′

α (W i
t−1, θ

i
0)f it−1(θi0)]

1√
P − k

n∑
t=R+k+1

Hi(t− 1) + oP (1), (63)

and

ξ̂h1P,k − ξh1P,k = E[gh
′

α (Wh
t−k−1, θ

h
0 )fht−k−1(θh0 )]

1√
P − k

n∑
t=R+k+1

Hh(t− k − 1) + oP (1). (64)

Therefore we get that

√
P − k(γ̂ihP,k−γihP,k) = E{gi

′

α (W i
t−1, θ

i
0)f it−1(θi0)[Iht−k,α(θh0 )−α]

1√
P − k

n∑
t=R+k+1

Hi(t−k−1)}+oP (1).

(65)
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Corollary 3 in Escanciano and Olmo (2008 a) and our Assumption 5 imply that γ̂ihP,k →d N(0, α2(1−
α)2).

Moving to the multivariate framework, let {It,α(θ0)} be the H dimensional vector that collects

the hits sequences from all H trading lines. The multivariate hits process sample autocovariance and

autocorrelation are defined as

ΓP,k =
1

P − k

n∑
t=R+k+1

(It,α(θ0)− α)(It−k,α(θ0)− α)′, (66)

and respectively as

ρP,k = ΓP,kΓ−1
P,0, (67)

for k ≥ 1, where both ΓP,k and ρP,k are HxH matrices.

The two matrices can be stacked as 1xH2 row vectors with rows stacked one next to the other as

following Γ̃
′

P,k = [γ11
P,k, ..., γ

1H
P,k, ..., γ

H1
P,k, ...γ

HH
P,k ] respectively ρ̃

′

P,k = [ρ11
P,k, ..., ρ

1H
P,k, ..., ρ

H1
P,k, ...ρ

HH
P,k ].

Chitturi (1974) showed that for large P (� k) the multivariate autocorrelation vector process has,

approximately, a multivariate normal distribution with

E[ρ̃
′

P,k] = 0, (68)

and

cov[ρ̃P,k, ρ̃
′

P,l]
.
=

1

P
(V ⊗ V −1)δk−l, (69)

where
.
= denotes an approximate relationship, ⊗ denotes the direct product and δk−l denotes Kro-

necker delta with unity at k − l = 0 and zero elsewhere.

Rao (1973, p. 524) showed that if a random vector x has a multivariate normal distribution

N(0, QΣ) where Q is idempotent of rank p and Σ is positive-definite symmetric, then

x′Σ−1x ∼ χ2
p. (70)

Chitturi (1974) and Hosking (1980, Theorem 2) completed the proofs for the multivariate autoco-

variance and autocorrelation functions considering AR and ARMA processes17, hence the result from

our Theorem 1 follows. Q.E.D

17See Chitturi (1974) and Hosking (1980) for complete proofs.
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Table 1: Sizes of the Multivariate Ljung-Box and Univariate Ljung-Box tests for Christoffersen (1998)
design. We simulate i.i.d. Bernoulli variables with the probability of having a violation at time t equal
with α, the coverage rate, (i.e. p1

00 = p1
10 = p2

00 = p2
10 = α). VaR is computed at α = 0.01, α = 0.05

and α = 0.10. 1000 Monte Carlo simulations were performed and π is fixed at π = P/R = 0.05.

Size of the Multivariate Ljung-Box test

Lags K K = 1 K = 5 K = 10 K = 15
Risk Significance Forecast
level level horizon P

α = 1% τ = 5% P=250 0.0580 0.1510 0.1840 0.1650
P=500 0.1140 0.1900 0.1970 0.1760

α = 1% τ = 10% P=250 0.0660 0.1640 0.1920 0.1710
P=500 0.1350 0.2280 0.2270 0.1980

α = 5% τ = 5% P=250 0.0620 0.0760 0.0720 0.0640
P=500 0.0510 0.0590 0.0630 0.0610

α = 5% τ = 10% P=250 0.0950 0.1050 0.1050 0.1030
P=500 0.0880 0.1000 0.1140 0.1110

α = 10% τ = 5% P=250 0.0490 0.0460 0.0500 0.0390
P=500 0.0480 0.0570 0.0590 0.0500

α = 10% τ = 10% P=250 0.0850 0.0930 0.0830 0.0780
P=500 0.0940 0.1050 0.0990 0.1000

Size of the Univariate Ljung-Box test

Lags K K = 1 K = 5 K = 10 K = 15
Risk Significance Forecast
level level horizon P

α = 1% τ = 5% P=250 0.0190 0.0870 0.0920 0.1190
P=500 0.0400 0.1190 0.1500 0.1380

α = 1% τ = 10% P=250 0.0210 0.0890 0.0940 0.1210
P=500 0.0400 0.1290 0.1590 0.1440

α = 5% τ = 5% P=250 0.0580 0.0750 0.0670 0.0630
P=500 0.0360 0.0660 0.0470 0.0570

α = 5% τ = 10% P=250 0.0770 0.1160 0.1040 0.1030
P=500 0.0750 0.0910 0.0940 0.0920

α = 10% τ = 5% P=250 0.0380 0.0420 0.0490 0.0490
P=500 0.0360 0.0320 0.0510 0.0500

α = 10% τ = 10% P=250 0.0890 0.0800 0.0790 0.0770
P=500 0.0890 0.0730 0.0900 0.0900
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Table 2: Powers of the Multivariate Ljung-Box and Univariate Ljung-Box tests for Christoffersen
(1998) design. We simulate correlated Bernoulli variables with the probability of having a violation
at time t equal with α, the coverage rate, (i.e. p1

00 = p1
10 = p2

00 = p2
10 = α) and cross-correlation set

to 0.9. VaR is computed at α = 0.01, α = 0.05 and α = 0.10. 1000 Monte Carlo simulations were
performed and π is fixed at π = P/R = 0.05.

Power of the Multivariate Ljung-Box test

Lags K K = 1 K = 5 K = 10 K = 15
Risk Significance Forecast
level level horizon P

α = 1% τ = 5% P=250 0.3300 0.1390 0.1230 0.1160
P=500 0.7670 0.3560 0.2620 0.2240

α = 1% τ = 10% P=250 0.4670 0.1750 0.1540 0.1440
P=500 0.8680 0.4410 0.3350 0.2920

α = 5% τ = 5% P=250 0.9970 0.8990 0.6580 0.5170
P=500 1.0000 1.0000 0.9910 0.9670

α = 5% τ = 10% P=250 0.9980 0.9380 0.7580 0.6240
P=500 1.0000 1.0000 0.9940 0.9790

α = 10% τ = 5% P=250 1.0000 0.9990 0.9650 0.8640
P=500 1.0000 1.0000 1.0000 1.0000

α = 10% τ = 10% P=250 1.0000 1.0000 0.9880 0.9280
P=500 1.0000 1.0000 1.0000 1.0000

Power of the Univariate Ljung-Box test

Lags K K = 1 K = 5 K = 10 K = 15
Risk Significance Forecast
level level horizon P

α = 1% τ = 5% P=250 0.0190 0.0870 0.0920 0.1190
P=500 0.0400 0.1190 0.1500 0.1380

α = 1% τ = 10% P=250 0.0210 0.0890 0.0940 0.1210
P=500 0.0400 0.1290 0.1590 0.1440

α = 5% τ = 5% P=250 0.0580 0.0750 0.0670 0.0630
P=500 0.0360 0.0660 0.0470 0.0570

α = 5% τ = 10% P=250 0.0770 0.1160 0.1040 0.1030
P=500 0.0750 0.0910 0.0940 0.0920

α = 10% τ = 5% P=250 0.0380 0.0420 0.0490 0.0490
P=500 0.0360 0.0320 0.0510 0.0500

α = 10% τ = 10% P=250 0.0890 0.0800 0.0790 0.0770
P=500 0.0890 0.0730 0.0900 0.0900
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Table 3: Sizes of the Multivariate Ljung-Box and Univariate Ljung-Box tests using data generated
from Hong et al.(2009) DGP. The parametrization considered is: β11 = 0, β12 = 0, γ10 = 0.05,
γ11 = 0.88, γ12 = 0.01, γ13 = 0, β21 = 0, β22 = 0, γ20 = 0.15, γ21 = 0.73, γ22 = 0, γ23 = 0.1. The
innovations are assumed to follow Student T distributions with ν1 = 5 and ν2 = 5 degrees of freedom.
VaR is computed at α = 0.01, α = 0.05 and α = 0.10. 1000 Monte Carlo simulations were performed
and π is fixed at π = P/R = 0.05.

Size of the Multivariate Ljung-Box test

Lags K K = 1 K = 5 K = 10 K = 15
Risk Significance Forecast
level level horizon P

α = 1% τ = 5% P=250 0.0270 0.0390 0.0520 0.0580
P=500 0.0290 0.0570 0.0790 0.0930

α = 1% τ = 10% P=250 0.0270 0.0390 0.0520 0.0580
P=500 0.0290 0.0650 0.0810 0.0950

α = 5% τ = 5% P=250 0.0960 0.1300 0.1220 0.1200
P=500 0.1230 0.1680 0.1800 0.1790

α = 5% τ = 10% P=250 0.1120 0.1530 0.1490 0.1410
P=500 0.1430 0.2060 0.2090 0.2070

α = 10% τ = 5% P=250 0.0930 0.1330 0.1400 0.1440
P=500 0.1090 0.1700 0.2040 0.2110

α = 10% τ = 10% P=250 0.1170 0.1670 0.1820 0.1860
P=500 0.1480 0.2190 0.2590 0.2670

Size of the Univariate Ljung-Box test

Lags K K = 1 K = 5 K = 10 K = 15
Risk Significance Forecast
level level horizon P

α = 1% τ = 5% P=250 0.0340 0.0780 0.1030 0.1330
P=500 0.0530 0.1450 0.1860 0.1760

α = 1% τ = 10% P=250 0.0340 0.0790 0.1050 0.1350
P=500 0.0560 0.1500 0.1950 0.1800

α = 5% τ = 5% P=250 0.0570 0.0730 0.0740 0.0770
P=500 0.0590 0.1060 0.0990 0.1050

α = 5% τ = 10% P=250 0.0750 0.1140 0.1050 0.1060
P=500 0.0860 0.1390 0.1500 0.1510

α = 10% τ = 5% P=250 0.0490 0.0590 0.0720 0.0620
P=500 0.0510 0.0540 0.0670 0.0710

α = 10% τ = 10% P=250 0.0860 0.1170 0.1110 0.1020
P=500 0.1040 0.1070 0.1150 0.1170
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Table 4: Powers of the Multivariate Ljung-Box and Univariate Ljung-Box tests using data generated
from Hong et al.(2009) DGP with spillovers through the mean. The parametrization considered is:
β11 = 0, β12 = 0.7, γ10 = 0.05, γ11 = 0.88, γ12 = 0.01, γ13 = 0, β21 = 0, β22 = 0, γ20 = 0.15,
γ21 = 0.73, γ22 = 0, γ23 = 0.1. The innovations are assumed to follow Student T distributions with
ν1 = 5 and ν2 = 5 degrees of freedom. VaR is computed at α = 0.01, α = 0.05 and α = 0.10. 1000
Monte Carlo simulations were performed and π is fixed at π = P/R = 0.05.

Power of the Multivariate Ljung-Box test

Lags K K = 1 K = 5 K = 10 K = 15
Risk Significance Forecast
level level horizon P

α = 1% τ = 5% P=250 0.1330 0.1990 0.2350 0.2170
P=500 0.1730 0.3160 0.3600 0.3480

α = 1% τ = 10% P=250 0.1360 0.2010 0.2360 0.2220
P=500 0.1800 0.3350 0.3640 0.3510

α = 5% τ = 5% P=250 0.2000 0.2980 0.2780 0.2570
P=500 0.2920 0.4660 0.4730 0.4550

α = 5% τ = 10% P=250 0.2470 0.3480 0.3270 0.3110
P=500 0.3390 0.5280 0.5230 0.5140

α = 10% τ = 5% P=250 0.1840 0.2600 0.2610 0.2380
P=500 0.2880 0.4670 0.4860 0.4470

α = 10% τ = 10% P=250 0.2300 0.3190 0.3230 0.2970
P=500 0.3650 0.5470 0.5720 0.5270

Power of the Univariate Ljung-Box test

Lags K K = 1 K = 5 K = 10 K = 15
Risk Significance Forecast
level level horizon P

α = 1% τ = 5% P=250 0.0670 0.2420 0.1920 0.2100
P=500 0.1270 0.4000 0.3420 0.3440

α = 1% τ = 10% P=250 0.0710 0.2510 0.1930 0.2120
P=500 0.1330 0.4220 0.3500 0.3480

α = 5% τ = 5% P=250 0.1400 0.4260 0.2000 0.1830
P=500 0.1870 0.6190 0.3260 0.3140

α = 5% τ = 10% P=250 0.1810 0.5330 0.2410 0.2350
P=500 0.2430 0.7180 0.4130 0.3910

α = 10% τ = 5% P=250 0.0960 0.4270 0.1410 0.1230
P=500 0.1460 0.5840 0.2360 0.2250

α = 10% τ = 10% P=250 0.1400 0.5750 0.2020 0.1820
P=500 0.2110 0.6940 0.3300 0.3090

29



Table 5: Powers of the Multivariate Ljung-Box and Univariate Ljung-Box tests using data generated
from Hong et al.(2009) DGP with spillovers through the variance. The parametrization considered
is: β11 = 0, β12 = 0, γ10 = 0.05, γ11 = 0.88, γ12 = 0.01, γ13 = 0.7, β21 = 0, β22 = 0, γ20 = 0.15,
γ21 = 0.73, γ22 = 0, γ23 = 0.1. The innovations are assumed to follow Student T distributions with
ν1 = 5 and ν2 = 5 degrees of freedom. VaR is computed at α = 0.01, α = 0.05 and α = 0.10. 1000
Monte Carlo simulations were performed and π is fixed at π = P/R = 0.05.

Power of the Multivariate Ljung-Box test

Lags K K = 1 K = 5 K = 10 K = 15
Risk Significance Forecast
level level horizon P

α = 1% τ = 5% P=250 0.0860 0.1520 0.1790 0.1680
P=500 0.1810 0.3170 0.3400 0.3450

α = 1% τ = 10% P=250 0.0970 0.1610 0.1870 0.1720
P=500 0.2000 0.3370 0.3530 0.3600

α = 5% τ = 5% P=250 0.1850 0.3020 0.3220 0.2960
P=500 0.3180 0.5290 0.5780 0.5790

α = 5% τ = 10% P=250 0.2230 0.3360 0.3570 0.3230
P=500 0.3750 0.5830 0.6260 0.6250

α = 10% τ = 5% P=250 0.2030 0.3530 0.3790 0.3570
P=500 0.3700 0.6220 0.6770 0.6760

α = 10% τ = 10% P=250 0.2630 0.4160 0.4290 0.4120
P=500 0.4500 0.6750 0.7330 0.7310

Power of the Univariate Ljung-Box test

Lags K K = 1 K = 5 K = 10 K = 15
Risk Significance Forecast
level level horizon P

α = 1% τ = 5% P=250 0.0230 0.1070 0.0930 0.1010
P=500 0.0500 0.1830 0.1780 0.2000

α = 1% τ = 10% P=250 0.0230 0.1080 0.0940 0.1010
P=500 0.0500 0.1840 0.1780 0.2000

α = 5% τ = 5% P=250 0.1000 0.3540 0.2560 0.2580
P=500 0.2080 0.5800 0.4540 0.4730

α = 5% τ = 10% P=250 0.1180 0.3920 0.2690 0.2770
P=500 0.2320 0.6250 0.4850 0.4940

α = 10% τ = 5% P=250 0.1690 0.4960 0.3220 0.3200
P=500 0.2650 0.7430 0.5360 0.5660

α = 10% τ = 10% P=250 0.2000 0.5730 0.3590 0.3520
P=500 0.3200 0.7970 0.5890 0.6140
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Table 6: Powers of the Multivariate Ljung-Box and Univariate Ljung-Box tests using data generated
from a bivariate BEKK DGP. The parametrization considered is: a0,11 = 14.8511, a0,21 = 0.6318,
a0,22 = 1.0809, a1,11 = 0.2525, a1,12 = −0.2308, a1,21 = −0.3709, a1,22 = 0.0807, b11 = 0.3503,
b12 = 0.6730, b21 = −0.4592, b22 = 0.3663. The innovations are assumed to follow a bivariate Student
T distribution with variance covariance matrix: σ11 = σ22 = 1, σ12 = σ21 = 0.4 and ν = 5 degrees of
freedom. VaR is computed at α = 0.05 and α = 0.10. 1000 Monte Carlo simulations were performed
and π is fixed at π = P/R = 0.05.

Power of the Multivariate Ljung-Box test

Lags K K = 1 K = 5 K = 10 K = 15
Risk Significance Forecast
level level horizon P

α = 1% τ = 5% P=250 0.1600 0.2260 0.2350 0.1970
P=500 0.1860 0.2480 0.2360 0.2260

α = 1% τ = 10% P=250 0.1880 0.2560 0.2580 0.2120
P=500 0.2450 0.2970 0.2850 0.2630

α = 5% τ = 5% P=250 0.1150 0.1400 0.1190 0.1090
P=500 0.1080 0.1290 0.1040 0.0980

α = 5% τ = 10% P=250 0.1620 0.1850 0.1650 0.1480
P=500 0.1520 0.1820 0.1590 0.1430

α = 10% τ = 5% P=250 0.0840 0.0860 0.0680 0.0720
P=500 0.0840 0.0730 0.0650 0.0740

α = 10% τ = 10% P=250 0.1340 0.1300 0.1090 0.1100
P=500 0.1180 0.1190 0.1240 0.1110

Power of the Univariate Ljung-Box test

Lags K K = 1 K = 5 K = 10 K = 15
Risk Significance Forecast
level level horizon P

α = 1% τ = 5% P=250 0.0690 0.2970 0.1110 0.1030
P=500 0.1000 0.3670 0.1330 0.1240

α = 1% τ = 10% P=250 0.0910 0.3760 0.1390 0.1280
P=500 0.1360 0.5050 0.1770 0.1600

α = 5% τ = 5% P=250 0.0540 0.3060 0.0570 0.0530
P=500 0.0670 0.3840 0.0700 0.0640

α = 5% τ = 10% P=250 0.0850 0.4480 0.0990 0.0910
P=500 0.1180 0.5090 0.1320 0.1100

α = 10% τ = 5% P=250 0.0590 0.3340 0.0500 0.0590
P=500 0.0620 0.3620 0.0650 0.0600

α = 10% τ = 10% P=250 0.1220 0.4830 0.0940 0.0980
P=500 0.1140 0.5360 0.1030 0.0990
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Table 7: Application uses data provided by Christophe Perignon and Daniel R. Smith for P&L and
VaR at 1% risk level for Bank of America (BOA) and Credit Suisse First Boston (CSFB). Data
contains 1000 observations starting from January 1, 2001 up to December 31, 2004. Panel A displays
p-values for the multivariate test, Panel B p-values for the univariate test for BOA and Panel C
p-values for the univariate test for CSFB. {∗} denotes statistical significance at 5% level and {∗∗}
at 1% level. Tests consider rolling windows of 250 trading days. Vio denotes banks’ actual number
of violations. The expected number of violations at 1% risk level for each 250 trading days rolling
window is 2.5 .

Panel A Lags K K = 1 K = 5 K = 10 K = 15
Vio Vio Forecast

BOA CSFB horizon P

1 2 P=1:250 0.9998 1.0000 1.0000 1.0000
0 1 P=251:500 1.0000 1.0000 1.0000 1.0000
3 2 P=501:750 0.9986 1.0000 1.0000 1.0000
0 1 P=751:1000 1.0000 1.0000 1.0000 1.0000

Panel B Lags K K = 1 K = 5 K = 10 K = 15
Vio Vio Forecast

BOA CSFB horizon P

1 2 P=1:250 0.9487 1.0000 1.0000 1.0000
0 1 P=251:500 1.0000 1.0000 1.0000 1.0000
3 2 P=501:750 0.8456 0.9991 1.0000 1.0000
0 1 P=751:1000 1.0000 1.0000 1.0000 1.0000

Panel C Lags K K = 1 K = 5 K = 10 K = 15
Vio Vio Forecast

BOA CSFB horizon P

1 2 P=1:250 0.8971 0.9999 1.0000 1.0000
0 1 P=251:500 0.9487 1.0000 1.0000 1.0000
3 2 P=501:750 0.8971 0.9999 1.0000 1.0000
0 1 P=751:1000 0.9487 1.0000 1.0000 1.0000
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Table 8: Application uses data provided by Christophe Perignon and Daniel R. Smith for P&L for
Bank of America (BOA) and Credit Suisse First Boston (CSFB). Data contains 1000 observations
starting from January 1, 2001 up to December 31, 2004. VaRs are obtained by fitting a BEKK(1,1,1)
model. The risk level considered is 1 %. Panel A displays p-values for the multivariate test, Panel B
p-values for the univariate test for BOA and Panel C p-values for the univariate test for CSFB. {∗}
denotes statistical significance at 5% level and {∗∗} at 1% level. Tests consider rolling windows of 250
trading days. Vio denotes banks’ actual number of violations. The expected number of violations at
1% risk level for each 250 trading days rolling window is 2.5 .

Panel A Lags K K = 1 K = 5 K = 10 K = 15
Vio Vio Forecast

BOA CSFB horizon P

0 2 P=1:250 1.0000 1.0000 1.0000 1.0000
0 2 P=251:500 1.0000 1.0000 1.0000 1.0000

1 4 P=501:750 0.0000** 0.0000** 0.0063** 0.2434
0 2 P=751:1000 0.9994 1.0000 1.0000 1.0000

Panel B Lags K K = 1 K = 5 K = 10 K = 15
Vio Vio Forecast

BOA CSFB horizon P

0 2 P=1:250 1.0000 1.0000 1.0000 1.0000
0 2 P=251:500 0.9487 1.0000 1.0000 1.0000
1 4 P=501:750 0.9487 1.0000 1.0000 1.0000
0 2 P=751:1000 0.9487 1.0000 1.0000 1.0000

Panel C Lags K K = 1 K = 5 K = 10 K = 15
Vio Vio Forecast

BOA CSFB horizon P

0 2 P=1:250 0.8971 0.9999 1.0000 1.0000
0 2 P=251:500 0.9487 1.0000 1.0000 1.0000
1 4 P=501:750 0.7943 0.9976 1.0000 1.0000
0 2 P=751:1000 0.8456 0.9995 1.0000 1.0000
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Table 9: This table, from Perignon & Smith (2009), reports VaR backtesting information for Bank
of America (BOA) and Credit Suisse First Boston (CSFB). Data is collected by Christophe Perignon
and Daniel R. Smith from January 1, 2001 up to December 31, 2004. Banks’ total assets (in millions)
and ranking (based on total assets) are as of December 31, 2005 and were collected by the authors
from Bankersalmanac.com. Figures on trading revenues are expressed in local currencies.

BOA CSFB

Country U.S. Switzerland
Currency USD CHF

Total Assets 1,082,243 1,016,050
Worldwide Rank 7 9
Domestic Rank 1 2

VaR method Historical Simulation Historical Simulation
Number of Trading Days 1,008 1,031

% Days with Neg. Revenues 13.00 37.05
Expected Exceptions 10 10

Actual Exceptions 4 6

Table 10: Banks Profit and Loss (P&L) and VaR Summary Statistics Table from Perignon & Smith
(2009). This table displays for each bank the summary statistics for the daily trading revenue (P&L)
and VaR data. Data are expressed in local currency and the sample period is 2001-2004. The summary
statistics include the first four moments, minimum, and maximum for each variable, the Bera-Jarque
normality test, the first-order autocorrelation coefficient, the Augmented Dickey-Fuller test (ADF),
the Ljung-Box (LB) autocorrelation test using 12 lags, and the ARCH-12 test, which is a LB test
applied to the squared demeaned returns. The ADF test includes an intercept, time trend and twelve
lags. {∗} denotes statistical significance at 5% confidence level.

BOA CSFB

Daily P&L Daily VaR Daily P&L Daily VaR

Mean 13.85 43.43 5.03 63.55
Variance 222.24 144.14 369.16 215.89
Skewness 0.123 0.10 0.240∗ 0.02
Kurtosis 4.93∗ 2.81 9.90∗ 2.29

Bera-Jarque Test 159.11∗ 3.05 1, 510.30∗ 21.94
Autocorrelation 0.064 0.892 0.124 0.947

ADF −31.09∗ −9.45∗ −40.63∗ −9.53∗

LB-12 9.38 7,246.70 66.20∗ 8,563.80
ARCH-12 23.73∗ 2,916.90 44.99∗ 4,350.40
Minimum -57.39 11.38 -105.30 27.16
Maximum 84.33 90.49 138.45 100.19
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Table 11: Correlations of Profit and Loss (P&L) and VaR time series across Bank of America (BOA)
and Credit Suisse First Boston Bank (CSFB). Data is collected by Christophe Perignon and Daniel
R. Smith from January 1, 2001 up to December 31, 2004.

Daily P&L Daily VaR

BOA CSFB BOA CSFB
BOA 1 1
CSFB 0.0541 1 0.1681 1

Table 12: Table displays Basel Accord penalty zones. The number of violations are given for 250
trading days. k is the penalty.

Zone Number of violations Increase in k
Green 0 to 4 0.00
Yellow 5 0.40

6 0.50
7 0.65
8 0.75
9 0.85

Red 10+ 1.00
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Table 13: Table displays the mean daily capital charge (in millions). The daily capital charge is given
as the negative of the higher of the previous day VaR or the average VaR over the last 60 business
days times (3 + k), where k is the penalty.

Panel A: Bank of America

Model Forecast horizon P Number of violations Mean daily capital charge
Historical Simulation P=1:250 1 155.5478

P=251:500 0 111.6825
P=501:750 3 86.8456
P=751:1000 0 123.1842

Model Forecast horizon P Number of violations Mean daily capital charge
BEKK(1,1,1) P=1:250 0 210.3212

P=251:500 0 150.4526
P=501:750 1 135.6461
P=751:1000 0 161.6967

Panel B: Credit Suisse First Boston

Model Forecast horizon P Number of violations Mean daily capital charge
Historical Simulation P=1:250 2 201.5421

P=251:500 1 199.4692
P=501:750 2 164.2718
P=751:1000 1 153.2637

Model Forecast horizon P Number of violations Mean daily capital charge
BEKK(1,1,1) P=1:250 2 213.6133

P=251:500 2 163.2248
P=501:750 4 108.0322
P=751:1000 2 128.5367
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Figure 1: Figure displays the daily VaRs (lower line) and trading revenues (upper line) of Bank of
America and Credit Suisse First Boston between January 1, 2001 and December 31, 2004. All values
are in millions and are expressed in local currencies. Data from Perignon&Smith (2009).
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Figure 2: Figure displays the daily BEKK obtained VaRs (lower line) and trading revenues (upper
line) of Bank of America and Credit Suisse First Boston between January 1, 2001 and December 31,
2004. All values are in millions and are expressed in local currencies. Trading revenues data are from
Perignon&Smith (2009). VaR data is obtained by employing a BEKK(1,1,1) as risk model.
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Figure 3: Figure displays the hits sequences for Bank of America (blue line) and Credit Suisse First
Boston (green line) for 1000 trading days between January 1, 2001 and December 31, 2004.
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Figure 4: Figure displays the Profit/Loss (P&L) and VaR histograms of Bank of America (BOA) and
Credit Suisse First Boston Bank (CSFB) for trading days between January 1, 2001 and December 31,
2004. The scale of the subplots differs across banks and is indicated on the x-axis.
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