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ABSTRACT 

This paper develops diagnostics for data thought to be generated in accordance with 

the general univariate linear model. A first set of diagnostics is developed by considering 

[~; posterior probabilities of models that dictate which of k observations from a sample of n 

observations (k < n/2) are spuriowly generated, giving rise to the possible outlyingness 

of the k observations considererd. This is turn gives rise to diagnostics to help assess 

[' (estimate) the value of k. A second set of diagnostics is found by using the Kullback­

Leibeler symmetric divergence, which is found to generate measures of outlyingness and 

influence. Both sets of diagnostics are compared and related to each others and to other 

diagnostic statistics suggested in the literature. An example to illustrate to the use of 
[ 

these diagnostic procedures is included. 
• 

Key Words: spurIOUS and outlying observations; posteriors of models; leverage; 
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1. INTRODUCTION. 

According to Webster's dictionary, Diagnosis is the art of inferring from symptoms or 

manifestations the nature of an illness or the cause of a situation. One of the most serious 

illnesses that can occur in linear statistical model situations is the presence of outliers, 

and this fact has motivated the creation of the whole area of robust estimation and outHcr 

testing. From the Bayesian point of view the study of outliers in linear models has already 

induced a long tradition. In a seminal paper, Box and Tiao (1968) showed 'that assum­

ing a normal contaminated distribution for the generation of the observations of a linear 

model, the estimation of the parameters involve a weighted average of estimators from 2" 

distributions. These 2" distributions are obtained by considering all the possible cases 

of subsets of the n observations belonging to the contaminating distribution. Although 

they were more concerned with estimation than with outlier identification, their approach 

leads to diagnostics for model heterogenety, further investigated in Peiia and Tiao (1992). 

Abraham and Box (1978) introduced heterogenety in the mean instead of in the variance. 

[:� This mean-shift model was also suggested by Guttman, Dutter and Freeman (1978). These 

models have been compared in Eddy (1980), Freeman (1980), and Pettit and Smith (1985). 

In Section 3 of this paper we shall show that one of the diagnostic measures we suggest 

can be justified if sampling is from either one of aforementioned models. 

Zellner (1975), Zellner and Moulton (1985) and Chaloner and Brant (1988) defin.e 

outliers as extreme observations arising from the model under consideration and do not 

view these as being generated from a mean-shift or variance-shift model. Outliers are then 

detected by examining the posterior distribution of the random errors. 

Since the work of Cook (1977), Cook and Weisberg (1982) and Belsley, Kuh and 

Welsch (1980), the study of influential observations in a linear model has been an area L.­
of very active research. Johnson and Geisser (1983, 1985) built measures of influence in 

univariate and multivariate linear models by using the Kullback-Leibler divergence between 
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certain predictive or posterior distributions. Related work is found in Pettit and Smith 
r',t.� ' (1985). Guttman and Peiia (1988) showed, using the same approach, that a global influence 

measure built from a certain joint posterior distribution can be decomposed into a measure 

of outlyingness and a measure of influence and that this Bayesian diagnostic emcompasses 

the frequentist diagnostics for outliers and influence. Related work can be found in Ali 

(1990). Kempthome (1986) used a formal decision - theoretic set up to justify influence 

measures in a Bayesian framework. In a similar spirit, Carlin and Pol.'lon (1991) have 

justified taking the Kullback-Leibler divergence as the utility function and have shown 

I 
r� 

how to compute diagnostics using the Gibbs sampling method. 
L 

The objective of this paper is (i) to present diagnostics for heterogeneity based on mean 

shift or variance-shift models, and (ii) to present diagnostics based on measures of influence 

derived from Kullback-Leibler divergences. Doing this requires different approaches and 

assumptions, so that a further objective is to show the relationship of the diagnostics found 

from (i) and (ii). 

In Section 2, we describe two variants of the usual linear model which allows for 

the generation of spurious observation, namely the so-called (mean-shift' and (variance­

inflation' models. In Section 3, we derive our first diagnostic Cl, the conditional posterior 

probability that for given k, a certain set of k out of n observations are generated 

by the mean-shift model, and show the connection of Cl with the leverage of these k 

observations. We also demonstrate that Cl is approximately for large n, the conditional 

(on k) posterior probability that the k observations have been generated according to the 

variance-inflation model. Section 4 allows for diagnostics concerning the determination of 

k. The Kullback-Leibler divergence is used in Section 5 to measure the disparity between 

various posteriors based on the full sample with those based on a set of n - k observations. 

With the measures obtained in Section 5, we turn to comparing the behaviour of Cr and 

the Ku11back-Leibler induced diagnostics in Section 6. We then indicate in Section 7, how 
t:" 

)
L.

,- a procedure using all these diagnostics would proceed by illustrating with a real set of 
" 

data.. 
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2. THE GENERAL SETTING. 

We will be concerned with the analysis of data thought to be generated in accordance 

with the general univariate linear model, universally denoted as 

y=X fJ+e (2.1) 

where 
X is (n x p), r(X) =p < n 

fJ is (p x 1) (2.1a) 

E is N(O, 0" I,,) 

We invisage that although (2.1) is the intended situation, the experimenter fears (because 

of experience) that some observations, say Yi. , t = 1, ... , k ,with k fixed and such that 

k << n/2, are 3puriOU"zy generated, with mean-shift spuriousity parameter at, that is 

E(yic) =xt fJ +a, 

t =1, ... ,k (2.2) 

r 

[-

We denote the set {i 1 , ••• i.} by I , that is, I is the set of k distinct integers chosen from 

the set {I, ... , n}. The use of the term "Spurious" above implies that the observations 

indexed by the set I were generated not in the manner intended (as described by (2.1)), 

but specifically by the generation process (2.2), called the mean.3hift "puriou3ity model. 

If for a given set of observations indexed by {ill'''' i,} = I, (2.2) holds, then after 

permutation we may write 

(2.3a) 

c-
J " 
L. where notationally, we mean: 

(1) =exclude or omit objects connected with the elements of I ={it, ... I i,} (2.3b) 
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so that, for example, 

(2.3c) 

where the complement of I is {il, ... i,,_.} C{l, ... ,n). Further, Xu) is the [(n-k)xp] 

matrix found by ommitting rows (i l , ... i.) from the matrix X of (2.1); we use the 
c'L notation I to donote: 

I =use the data indexed by I only. (2.3d) 

We denote the model described by (2.3a) by Mr = M'I""'. , and we note that it says 
r- .....',\ 
t ~ that k observations yr = (Yi l , ••• , Yi.)' , are generated spuriously, while the rest, that is, 

n - k observations (YiL"'" Yj,,_.)' = Y(1) have been generated as intended. We make one 

additional assumption, which is: 

r(X(1») = p < n - k . (2.4) 

We note that in the ensuing sections, the special case k = 1 will be delineated and 

discussed and for this situation we will use the notation 1= i, etc. 

We also note that if we knew that one of the (~) models Mr holds, and if we knew 

exactly which one of these holds, say Mr, then it would be natural to regress Y(I) on 

X( I) , forming

L (2.5) 

(2.5a) 

~~.. etc. 5(1) is the sum of squares of residuals based on what is thought to be the I'good" 

data, (Y(1),X(1») , so that 5(1) is a measure of scatter. 

There are of course other models than (2.3a) for describing the generation of spurious 

observations· for example, we might have 

(2.6) 
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with Er '" N(O,6~t1~I.), but, as usual, E(I) '" N(O,t1~In_.) and where 6~ > 1. Ther: model (2.6) is referred to as the variance-inflation model in the literature (see for example, 

Box and Tiao (1968).) 

We turn now to our first diagnostic, and its use in a first part of a diagnosis of a set 

of data, namely a diagnostic to detect spurious observations. 

3. DIAGNOSIS - PART 1. 

Faced with the possibility that one of the mean-shift models {Mr} as specified by 

(2.3a) holds, I ranging over the (~) sets oHorm 1= {i1 , ••• , i.l, a Bayesian might want 

to calculate the posterior probability, say Cr, tha.t Mr holds, that is, that (Y'l"" y,,.) =I 

yj is spuriously generated, and use the (~) Cr 's as a set of diagnostics. It turns out that 

this probabilty, as derived by Guttman, Dutter and Freeman (1978), is given by 

C K C" -(n-.-p)/2 IX' X I-l/~r = u(I) (I) (I) 

with (3.1) 

K- 1 - ,,'S. -(n-.-p)/~ IX' X 1-1/ 2 
- LJ (I) (I) (I) , 

where E denotes sum over all the (~) possible sets I. 

To help interpret the role of cr 's as diagnostics, suppose we consider first the simplest 

case, where p = 1, and it is thought that the generating process of the Y's is such that 

E(y) =~ (3.2) 

but it is feared that in a sample of n, that model Mr holds, which is to say, 

E(Y't) =~+at, t = 1, ... ,k 

while (3.3) 

E(Yj.. ) =~, u = 1, ... ,n - k. 

Suppose indeed that the experimenter fears Mr may hold for k = 2, a.nd that a 

sample of n yielded data which when plotted exhibits an extreme case such as depicted 

in Figure 3.1. 
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Figure 3.1. A sample of n = 10 observations 

t" 

Now for this problem X = 110 , a (10 x 1) vector of ones, so that X(1) = 18 as z ranges 

over the 45 different sets of 2 integers chosen from {I, ... , 10}. Hence XCI) X(1) = n - k = 

8 for all I. Further, for this example, I = (ill i:l) C (1, ... ,10), and 

S(1) = y(r)[Is - ~lsl~l Vel) 

(3.4) 
= 2: (y; - Y(l))2 

;¥tl,tJ 

with Y(l) = 2: Vi/(n - k) = ~ y;/8. 
;~illiJ ;~'l ,'J� 

Hence� 

(3.5)

\' 
with 

since IXCI) X(I)I = 8 for all I. For this example, E
, 

denotes the sum over all 45 sets(/ 
I = (i1, i2 ) of 2 integer chosen from (1, ... , 10) . Now as we cycle through the 45 different 

sets I = {i l , i2 }, we will eventually come to the set that excludes the minimum and 

maximum of the observations shown in Figure 3.1, so that the S(I) that we will then be 
r . 
\ . concerned with, will be minimum amongst all the S(I), and since Cl is proportional to 

S(I) -(n-le-p)/2 = S(I) -1/2 , the Cl for the case we are discussing will be largest, and in 

this extreme case, near 1. 

We remark that Cl as defined in (3.1) can be expressed as a function of leverage. We 

first note that since X = (XCI) : X~)' \ 

X' X = XCI) X(I) +XI XI (3.6) 

r so that 
L; IXcI)X(n! = IX'XI·llp - (X'X)-1 XIXII 

(3.7) 
= IX'Xl· IIIe - XI(X' X)-l XII. 
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Absorbing� IX'XI into the constant of proportionality K of (3.1), we thus have that 

- 1<."S -(n-Al-p)/2 11 H 1- 1/ 2CI - (I) . AI - I� (3.8) 

with K defined in the obvious way (see (3.1)), and wh~re 

(3.9) 

is that block of the so called "hat matrix" 1I, 

H = X(X' X)-l X!� (3.10) 

that is found by using columns and rows of H indexed by I =(ill"" i.). \Ve note that 

(' for k = 1 we have 
\\ : 

(3.11) 

where h. is the i -th diagonal element of H. Now the element h. is said to be the 

"leverage" of the observation Y" and we note that if this is large (i.e., close to 1), then 
[ I 

c. of (3.11), which takes the leverage of y. into account, tends .to be large, since c. is 

increasing in h.. For general k, 11 - HII-1 is a general function of the leverages of 

(Y't' ... , Yi.) = YI etc. 
r 
\. There may be a concern that the diagnostics Cl are only useful for the mean-shift 

model (2.3a), and not at all useful for diagnostics concerning the variance-inflation model 

(2.6). Peiia and Tiao (1992) address the question of diagnostics for the variance-inflation 

l' .� model (2.6), and it turns out that their diagnostics have an important and surprising 

connection with Cl. It turns out that, conditional on Y containing k spuriously generated 

observations, the poster: probability, say ".(1), that the set YI is spuriously generated 

1-'� according to the variance-inflation model (2.6) is given by (see Peiia and Tiao (1992))I . 
L_ 

~ 

IX'XI� }l/'}, { 2} 
(3.12)".(I)=Ko { IX'X-t/>XjXII .s~1) 

J

, 
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with 

<P = 1 - 8-2 
, (n - p)S2 = S = y'(I ­ H)y . (3.12a) 

As to slr) , a precise definition is given in Peiia and Tiao (1992), and it turns out that 

1··~· 
where (3.12b) 

r' 
r 

\ 

Hence, if 82 is a large, so that <P ~ 1 , we have, on consulting (3.6) that 

(3.13) 

j\ 
which for moderate or large n is essentially cr. 

A word here about k, the "order" of the model Mr. In practice, this is not known, but 

a realistic range of values for k may often be stated by the experimenter, based on his/h·r 

experience in the subject field, say 0 ~ k ~ ko. [Interesting comments on the "choice" of 

ko have been made by Daniel (1959) and Box and Tiao (1968). If 0 = Probability that 

an observation if spuriously generated, then these authors choose ko =on , with 0 = .10, 

. with supporting arguments]. Hence a second part of the diagnosis involves "estimating" k. 

This generates other diagnostic procedures, explained in Section 4, illustrated in Section 

6. 

4. TOWARDS COMPLETING THE DIAGNOSIS - PART 2 

f~
i ~ 

,r: 

Diagnostics for k are readily available, but to describe this aspect of the diagnostic 

procedure, we now present some interesting results in themselves, which turn out to be 

useful in making diagnoses about k. 

We first assume that we are interested in making inference about P, the regression 

coefficients involved in our linear model. It is well known [see for example, Box and Tiao . 
9 



We now explore the situation when one of the models Ml holds for a given value 

of k. Then, as derived in Guttman, Dutter and Freeman (1978), it turns out that the 

posterior of fJ takes the form 

~' ~ n-k-p . 
p( fJldatajk)= LJ CIhp ( fJl fJ{I)j S (X(l)X{I))jn-k-p) (4.7) 1 (I) 

where ~ (I) and S{I) have been defined in (2.5) and (2.5a) respectively. That is) the 

posterior of fJ is now a weighted combination of p -order multivariate t -densities, and 
[ I 

t ,� a typical term says: omit k y 's indexed by the set I and compute the posterior based on 

the remaining data whose effective sample size is n - k (see (4.1) and (4.7)), and weight 

that density with Cl, the posterior probability that the k observations now ignored, are 

\~ -.:� spuriously generated, or put another way, the density based on the (n - k) observations 

indexed by the complement of the set I is weighted with the probability that the k 

observ·.l.tions indexed by the set I itself should indeed be dropped. 

Now using properties of the p -order t -distribution given in (4.3), we find that 

E( fJldatajk) =~ Cl P{I) = b. say� (4.8) 

and 

E( fJfJ'ldatajk) = L,' Cl [n _:~~_ 2 (X}X{I))-l + ~(I) ~~I)] 
(4.9) 

= Die ,say 

so that 
l

L 
' 

V( fJ Idata; k) = Die - bleb~ . (4.10) 

matrix given in (4.10) are in the same units, namely, "y2" units. Now a measure of 

! 
) 11C' 
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dispersion of the densitites (4.1) and (4.7) is the trace (tr) of their variance-covariance 

matrices, and from (4.5) and (4.10) these are given by 

n-~-3 tr(X 1 X)-l if k = 0 
trV( PI data; k) == (4.11)

{ 
trDie - hi hie if k ;::: 0 

Of course, (4.11) is in units of "y3 ". We may now compare these traces for values 

k = 0,1, ... , ko • Now if a data set contains spurious observations which give rise to k 

(~xtreme) outlying observations, then (4.11) tends to have a minimum as a function of k, 

about some value, say k > 0, and we would use k as our estimator of k. This in turn 

means that we would use p( PI data; k) - see (4.7) - to make inferences about p. Of 

course, the xi.. 's could be in original units - for example, pressure in units of lbs./sq.in., 

( . time allowed for the process to run in minutes, temperature in 0 C, etc. Hence Vit is in 

i : uni ts of " y2 / x, ", so that values of trV ( PI data; k) cannot be used. 

But in this case, we can easily separately examine the diagonal elements Vit(k) , ard 

do this for each t, t == 1, ... ,p. These minimwns, usually, will be attained for each t a.t 

\ / the same value of k. (Of course, we can also do this for the previous case where Xj.. 's 

are in coded units, u == 1, ... ,njj = 1, ... ,p). 

Another source of a possible diagnosis for k is the Cl'S themselves. For each k we 

may compute the (~) , Cl'S and note the maximum, say cj that is, 

•Cr == max Cr (4.12)
r 

We now do this for each k == 1, ... , ko and find 

C•• == max Cl• (4.13) 
le 

The pattern of the individual cr's for given k and the value of k for which (4.13) is 

l' attained, together with the analysis of the variance-covariance matrices as described above, 
\ ,.­

gives much information about the likely value of k. This is illustrated in the example of 

Section 7. 
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Before turning to an example, we discuss the use of the Kullback-Leibler information 

r· to generate other diagnostics for spuriousness, and, it turns out, of influence. 

5. DIAGNOSIS: PART 3; THE USE OF KULLBACK-LEIBLER DIVERGENCE 

The motivation for the approach of this section is as follows: Suppose (2.1) holds,� 

so that in particular, all observations, have been generated as intended. Now consider� 

; : the posterior P of any or all the para.meters of model (2.1), based on all observations,� 

and contrast this with the posterior P(I), the posterior based on the n - k observations� 

Y(I) = (Yill ... , Yi.. -.)' with k << n/2. The pair (p, P(I») should not differ too markedly,� 
(. 

reflecting basically the same information about the parameters, except for the fact that\ ' 
[ 

P(I) is based on fewer observations than p. So as we let I range over the possible (~) 

availaLle sets 1= (i1, ... ,i,,) C (l, ... ,n), the paris (P,P(I») should differ in much the 

same fashion as each other. 

Now suppose the k observations (Y'l"'" Y'.) have been generated spuriously (mod­

els (2.3) and (2.6) are examples) and we based our posterior on (Yil"'" Yi.. -Io)' Then we 

would expect much divergence between P and P(I), since P is based on data that con­

tains spuriously generated observations, while P(I) does not. Of course, we do not know 

which set (Y'l"" Yi.) is the spurious set, so that we would like to examine the (~) 
possible cases, noting the pairs (p, P(I») that seem to diverge markedly, thus indicating 

that (Yi 1 , ••• , Yi.) has been generated spuriously. 

The question, then, at this point is how to measure divergence between two llensities. 

In this paper we utilize the Kullback-Leibler symmetric divergence, defined as follows. 

! 
r 

Definition 5.1: If !I and f2 are densities that are absolutely continuous with 

respect to measures J.ll and J.l2 , respectively, then the Kullback-Leibler information mea­

13 
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Lemma 5.1: Suppose x is a (p x 1) random vector variable whose density is 

one of 

(j = 1,2). Then the Kullback-Leibler divergence between !l and h is 

(5.4) 

The proof of this lemma is a straightforward application of (5.1) - (5.2) and left to 

the reader. We need Lemma 5.1 for the following situation. Suppose we assume that data 

is generated in accordance with 

(
\ 

y =X (J + f, f - N(0,0'2 I) (5.5) 

as in (2.1), and that the use of non-informative priors for (J and 0'2 is made, so that, 

III in particular the posterior of (J is as stated in (4.1). This of course means that for 

moderate to large n, 

(5.6) 

\. Here, 82 = S/(n - p), where S has been defined in (4.1a). [The symbol" "," means 

"approximately distributed as"]. Denote the density involved in (5.6) as p. 

Now suppose our posterior is based on the data (Y(l)j X(I») , where Y(I), X(I), ~(I), 
If;I . and S(l) have been defined in Section 2. Then for moderate to large n \ 

(5.7) 

L with s~I) = S{l>!(n - k - p). Denote the density involved in (5.7) as P(I) . Setting !I = P 

of (5.6) and h = P(i) of (5.7), we may now use Lemma 5.1 to state the following theorem. 
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Theorem 5.1. 

large, then 

Using the above notation, and assuming (5.5) holds with n moderate to 

(5.8) 

(1. 

and 
~ _ (n - p ­ k) (1 +eHI ­ HI)-l eI ) 
s~I) - (n-p) (n-p-k)sfI) 

D2 _ e'r(I ­ HI )-1 HI(I ­ HI )-l eI 
1­ pS2 

D2 _ eHI ­ HI)-I HIeI 
(I) - 2 ' 

pS(I) 

where, setting Y = (Y(IPYI) and X = (XCI)' X})' , then the (k x 1) 

b y 

e = (e(I),e'r)' = (I ­ H)y . 

(5.9) 

(5,9a) 

(5.9b) 

vector eI is given 

(5.9c) 

l' 

{
I , 

The proof of Theorem 5.1 is obtained by straightforward algebra using the results of 

Guttman and Peria (1988). 

The quantity DJ has long been advocated by Dennis Cook and fellow workers as a 

mea.H£re of influence - see for example Cook (1977,1979) and Cook and Weisberg (1982) 

and the references therein. Of course, DfI)' then, is also a measure of influence, albeit in 

a slightly different metric then D}. We remark that because of this, J fJ of Theorem 5.1 

is essentially a measure of influence, due to the presence of the terms pD] and pDfI)' 

A Corollary to Theorem 5.1 for the special case of interest when k = 1 is the following: 

[We have denoted (5.8) by J ,(p, p(I)lk) in the following Corollary, and we note that when 

k = 1, then I = {id which we may denote by i, i varying over (1, ... , n).] 

r Corollary 5.1.1. Setting J/J(p,p(i)lk = 1) 

2 

Mi( ~) = p(D~ +Dfi»/2 + S2(i~ 
.~ 

= Mi( ~), we have 

h 2 

(p + 1 i
h 

) + 2S2 (p ­
- 1 S(i) 

hi) - P (5.10) 

( 

l 
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where hi� is the i -th diagonal element of H . (,� 
l !� The proof of this Corollary is a straightforward application of Theorem 5.1 for the 

case k = 1. (Since k = 1 , sets I are singletons i 1 ,etc.) We will use J."fi( fJ) for all n 

sets i = {iu }, u = 1, ... ,n as diagnostics in our example of Section 7. 
/ 

We may want to also inquire about the divergence between posteriors of er 2 , as wei 
withdraw observations (Yi1 , ••• , Yi.). As is well known (for the case of non-informative 

priors), we have 

(5.11 ) 

and 

(5.12) 

~ .� Identifying the posterior density of er 2 in (5.11) as I:J and that of (5.12) as 1'(1), we have 

the following Theorem. 

l/� Theorem 5.2. Suppose (5.5) holds and non-informative priors are used, so that (5.11)� 

and (5.12) applies. Then the posteriors of er 2 of (5.11) and (5.12) have Kullback-Leibler 

symmetric divergence JvJ(p, p(l)/k), which to order of n-2 is 

k .s~I)� 1, 1 [1 1 ] JvJ(p, 1:J(1)lk) = -2 1n -2 + -2 [eI(IA: - HI)- er] -2- - """i" (5.13) 
.s .s (1) .s 

The proof of this theorem is given in Guttman and Peiia (1988). 

The case k = 1 will be of special interest, and we have 

f 

! ~ 
Corollary 5.2.1. If Jv 2)(p,p(I)lk = 1) = Mi(er 2 

) , then to terms of order n-2 
, 

z 
M·(er 2 ) = ~ in s(i) + ~(t~ - r~) (5.14) , 2 s2 2' ,

L where 

(5.15) 

I -� 17t 
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with er = ei , where we have set i 1 = i. 

The Statistic fi defined by (5.15) has been extensively used in the literature as a test 

for spuriousness, and of course ti is a similar statistic using a slightly different estimator 

of Var(ei) = 0'2(1- hi) in its denominator. It can be shown that Mi(0'2) is an increasing 

1' function of t~, and, hence is essentially a measure of outlyingness of Yi [we have set , " 

i 1 = i ,since k = 1 in the above]. 

Finally, we may ask about the divergencies of the posterior of ( {J, 0'2) , based on y 

f and Y(i) respectively. We have 
I 

Theorem 5.3. Suppose (5.5) holds, and non-informative priors are used. Then the 

Kullback-Leibler divergence between P(I) = p( P, 0'2 IY(l» and P = p( .B, 0'21y) is, toL terms of order n-2 , 

e(1)(Ii - HI )-1 er ] [1 1] 
J_,G'2(p,p(I)lk) = [ 2 sfI) - 8' 

(5.16) 
P 8(I):2 2 82]2 1 -1 k 8(1)2II +-2 [ -,D(I) + -2-D] + -2 tr{HI[I, - HI] HI} + -2 In -2 . 

8 8(1) s 

The proof of this Theorem is given in Guttman and Peiia (1988). This proof uses a 

key relation about conditional-unconditional divergences used for a more general model by 

Johnson and Geiser (1985). For the special case k =1, we have: 

Corollary 5.3.1. Letting J_,G'2(p,p(I)lk = 1) =Mi( P,0'2), then 

2r. -(t2 
i 

P- [8(i) 8M,( {J,O' 2) = 1 
- rt>2 + -2D(i)

2 + -2D 
2]
i

2 2 8(i)8 
(5.17) 

1 h~ 1 s(1) 
+ 21 - hi + 21n-:;2 

With the above Theorems and Corollarys in mind, we now turn in the next Section 

to a description of their behaviour, which will help map a strategy on Low to use these 

results in a diagnostic procedure. 

(' 18 
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6. THE COMPARISON OF THE VARIOUS DIAGNOSTIC MEASURES 
r 
l 

We have presented various statistics to identify spurious observations. These are 

the probability Cl, and the distance JI( fJ, (12). We have also shown that this latter 

f . portmanteau measure is related to the specific measures JI( fJ) and JI( (11), which, of 
l . 

course, can be used to identify influential and outlying observations. 

To illustrate the relationship between Cl and 1]( fJ, (12), let us consider the case 

k = 1 . Then, (5.17) can be written as, after some algebra 

2 r~ [09 2 1 ] 1 h~ 1 s2 
Mi(fJ,(1)=-2' -2 (1 h.)-(1-h i ) +-2-1 (6.1)'h'--2In-2 

$(i) -, - , s(') 

and using the fact that, for n large, 

8
2 

(t~) t~In -2- == In 1 +..!. ==..!. (6.2)
s(i) n n 

and since when n is large, ti ::::: ri , we have that, asymptotically, 

2 1 t~ t~ 1 h~ 1 t~t; M i( fJ ,(1 ) == - , - (1 - hi)..!. + - - _..!. , (6.3)I 

2 1 - hi 2 2 1 - hi 2 n 

so that, for n large, 

The above shows that Mi( fJ, (12) is a linear increasing function of t~. 

on hi, and the scale factor is a standard measure of leverage. 

In order to discuss the relationship between Mi( fJ, (12) to c" 

same scale by comparing Mi( fJ, (12) to log Ci. Then 

2 
, n s(i) 1 

log Ci = K - - log - - - log( 1 - hi)
2 S2 2 

and using (6.2) 

t~ 1 
logei = K +..!. - -log(l - hi)

2 2 

19 

(6.4) 

The slope depends 

we put both in the 

(6.5) 

(6.G) 



which shows that log c. is also a linear increasing function of t? The main difference 
rI between (6.4) and (6.6) is the way each of them deals with the leverage. Mi( P, 0'2) IS 

concerned with both outliers and influential points and the leverage factor hd(l - hi) IS 

the one that appears naturally in the standard influence measures such as Cook's statistics. 

On the other hand, log c. is a measure of spuriousness and does not include a product 

term between the outlier measure t~ and the leverage measure (1 - hi) . 

It is interesting to relate these measures to other statistics suggested in the literature 

to achive the same objective. Andrews and Pregibon (1978) proposed the ratio 

R.= (n--�p -1) S~i)(1_h.) (6.7)
n - p� s2 

and they identify outliers with the association of small values of this statistic. Belsley, 
I 
t..� Kuh, and Welsch (1980) suggested a similar statistic based on the volume of confidence 

ellipsoids. See Cook and Weisberg (1982) and Chatterjee and Hadi (1986) for a comparisor. 

of these measures. Now to compare (6.7) with the previous statistics in the same scale we 

\,� take minus the logarithm of R. to obtain, for large n, 
\ .. 

2 
s(.\

-logRi =-log~ -log(1- hi)� (6.8)
S2 

and if we compare above with (6.5) it is obvious that c. is taking into account the sample 

size in the evaluation of the observation point whereas, the Andrews and Pregibon statistic 

does not. 

In summary, Mi( fJ, (12) and c. provides us with complementary information about 

interesting points in the data set. The points identified as interesting by all the above 

measures could be further analyzed using Mi( fJ) and Mi((12) to differentiate between 

influential observations and outliers. 
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L 
7. AN ILLUSTRATIVE EXAMPLE - THE MICKEY DUNN CLARK DATA 

f . 

For this example, we will continue the famous "MDC data set" due to Mickey, Dunn 

and Clark (1967), and reported on in Cook and Weissberg (1982), Draper and Smith 

(1981), amongst others. We list the data in Table 7.1., and a plot is given in Figure 7.1. 

This data gives (X, Y) values for n = 21 students, where X = age at first word 

(months) and Y = score of Gessell aptitude test. It is assumed that the linear relation 

In the language of Sections 3 and 4, then, we first set k and compute the resulting 

(~) Cl'S, given by (3.1). For the MDC data, we have let k = 1,2,3. (That is, bearing 

in mind that .1n = 2.1 for this set of data, we have set ko = 3). We have entered the 

largest 6 Cl'S in Table 7.2. 
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Table 7.2.� 

The 6 largest Cl'S for the MDC data*� 

k=1 k=2 
.8153(19) .1096(13,19) 
.0180(13) .1096( 3,19) 
.0180( 3) .0709(11,19) 
.0143(18) .0685(14,19) 
.0134(14) .0517( 5,19) 
.0107(20) .0490(19,20) 

k=3 
.0459( 3,13,19) 
.0246(13,14,19) 
.0246( 3,14,19) 
.0163(11,13,19) 
.0163( 3,11,19) 
.0160( 3,19,20) 

* The numbers in brackets are the (i l , i 2 , ••• , i,.) that correspond to the accompanying( 
" Cl value. 

We see from Table 7.2. that the maximum of the maximum Cl'S occurs at k = 1 

with Cu = Prob (Y19 is spurious Ik = 1) = .8153. We note too that for k = 1, the 

f second largest C is C3 or Cu having value .0180, or put more dramatically, C19/Cn :: 

CU/C3 = 45.3. We also note the consistency with which observations y" , for j = 19,3,13, 

get into the act • for k = 2, we have maxc'l'" = C13,U = C3,19 = .1096 and for k = 3, 

maxc'l""" = C3,U,19 = .0459. We note too that for k =2, CU,U/Cll ,19 = C3,19/Cll,19 = 

1.55, and for k = 3, C19,3,U/Cu,u,a = CU,3,U/Cl9,3,U = 1.87, and these ratios are 

pedestrian when compared with Cl9/CH =45.3 = c19/c3(k =1). Thus, even at this stage 

of the diagnosis, evidence, is building that k = 1, and indeed that Yl9 is the spurious 

observation. 

Using (4.5) and (4.11), we obtain the numerical results of Table 7.3. (Complete listings 

of values of Cl'S (J I: 's and DI: 's are available from the authors). 

Table 7.3. 

The diagonal elements, lIte, of the matrices V( (J Idata; k) 

k=O k = 1 k=2 k=3 
28.70410 20.90559 22.67359 26.20836 
0.10753 0.08073 0.08954 0.10699 
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We note that the diagopal elements Vu and V:n attains their minimums in both 
cases at k = 1, providing yet more evidence· that there seems to be one spurious ob­
servation, the observation Y19, in this data. set. Tentatively, then, we consider the 
use of p( Pldata.;k = 1) to do inference re P (and/or p(]2Idata;k = 1) and/or 
p( P, (]2ldataj k = 1), depending on objectives). Indeed, for p( PIdata; k = 1) it turns 
out that 

E( PIdata' k = 1) = (109.40284). 
, -1.17759 ' 

(7.1) 

20.90559 -1.12645)
V( PIdata, k = 1) = ( -1.12645 0.08073 . 

Table 7.4. 

Values of the Diagnostics c., Mi( P, (]2), Mi((]2), Mi( P), h~ and t~ 

for the Mickey Dunn Clark data 

bservationo 
Number Ci Mi( fJ, (]3) M.(]3) M.( P) hi tf 

1 0.0062 0.0281 0.0252 0.0082 0.0479 0.0338 
2 0.0099 0.1644 0.0003 0.1652 0.1545 0.8866 
3 0.0180 0.1853 0.0395 0.1455 0.0628 2.2826 
4 0.0085 0.0546 0.0030 0.0533 0.0705 0.6630 
5 0.0085 0.0380 0.0024 0.0366 0.0479 0.6937 
6 0.0062 0.0299 0.0270 0.0099 0.0726 0.0009 
7 0.0064 0.0296 0.0219 0.0130 0.0580 0.0969 
8 0.0063 0.0290 0.0242 0.0105 0.0567 0.0528 
9 0.0065 0.0332 0.0226 0.0172 0.0799 0.0840 
10 0.0074 0.0422 0.0101 0.0357 0.0726 0.3815 
11 0.0106 0.1098 0.0003 0.1090 0.0908 1.1043 
12 0.0065 0.0324 0.0209 0.0172 0.0705 0.1175 
13 0.0180 0.1853 0.0395 0.1455 0.0628 2.2826 
14 0.0134 0.1059 0.0101 0.0949 0.0567 1.6378 
15 0.0067 0.0303 0.0184 0.0165 0.0567 0.1707 
16 0.0062 0.0293 0.0261 0.0095 0.0628 0.0162 
17 0.0083 0.0393 0.0034 0.0373 0.0521 0.6373 
18 0.0143 1.5157 0.0021 1.5396 0.6516 0.7142 
19 0.8153 2.8519 2.2745 0.7871 0.0531 13.0103 
20 0.0107 0.0697 0.0006 0.0686 0.0567 1.1588 
21 0.0062 0.0293 0.0261 0.0095 0.0628 0.0162 
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Figure 7.2. A plot of M.( fJ, (12) 

-3 ·2 -I 

against log c. [Mickey Dunn Clarke Data, n =21] 
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We have plotted M,( fJ, (12) versus log c, in Figure 7.2. The graph shows that 

M,( fJ, (12) 's have the same beha.viour in all points except for observation 18. The prob­

ability c, says that this observation is not likely to be spurious, whereas M,( fJ, a 2 
) says 

that the 18 th point is either outlying, influential or both. 

To help us to differenciate between outlying and influential points, we look at the 

statistics M.(a2 ) and M,( fJ). These values are also shown in Table 7.4. M,(a 2 
) shows 

clearly that the only outlying point is observation 19, with value 2.2745 which is 57.58 

times grea.ter than the next largest value, 0.0395 attained for observations 3 and 13. 

24 



Going to Mi( (J), we see that the most influential point is observation 18, with a value 

[, of 1.5396 that is twice as large as the one for the spuriously generated observation 19, 

and 9.32 times the next largest. 

Table 7.4.� also shows the values of hi and t~ for the MDC data. It can be seen 

CJ� that all observations have approximately the same leverage (between .05 and .15) except 

for observation eighteen that has a. leverage of .65. Then, from the results of Section 6, 

we would expect a linear relationship between t~ and log Ci , except for observation 18. 

r', Figure 7.3. shows this graphically. The values of hi and t~ are given for completeness in \ 

l. 
Table 7.4. 

l4r-----~-----r----~---~---___,.---_ 

t l2~ 

10 ~ · 

81-.. ·� 

·� 

4 .. · 

2- ·•.' • • +-18....r.... o~ ·5 -4 ·3 ·2 ·1 o 
Figure 7.3. A plot of t~ against logci (Mickey Dunn Clarke data, n = 21 ) 

Now from the joint distribution of (130,131) = (J', given in (4.7) with k = k = 1, 

n =21, P = 2, we may find the posterior marginals of either 130 or 131 using properties 

of the bivariate t -distribution. We now illustrate the case where interest is in 131. We 
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need additional notation - suppose we let the (2 x 2) matrix 

{I 

(7.2) 

and denote the 2 - 2 element of G(i) by g~~ , and set 

(7.3) 

Then, from properties fo the multvariate t -distribution, and consulting (4.7) with p =2,r 
l. ' k = 1, we have 

(7.4) 

I 

Here, ~ denotes the sum over all possible sets i = {i1 } C (1, ... , n) ,etc. Recall from 

(7.1) that 

E(,81Idatajk = 1) = -1.17759jV(,81Idata,k = 1) = 0.08073 (7.5) 

"Ve have tabulated (7.4) and graphed this posterior density in Figure 7.4. The relative 

smooth (slightly asymmetric) curve is no doubt due to the fact the CI!l is so much larger 

j' than all the other ca's, so that the curve is dominated by C19 x p(,8IIY19; k = 1). Using 
l,~ 

our tabulations, we have incorporated these computations into some numerical integra.tion 

routines and have found posterior HPD intervals for ,81 at level 1 - 0 = .90, .95, .09, 
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and tabulated these in Table 7.5. 

P 
0.008 

o 

Figure 7.4. The posterior of the slope /31 given in (7.4) based on the MDC data set. 

Table 7.5. 

The 100(1 - et) % posterior HPD limits for /31 based on (7.4) 

lower upper 
1-a limit limit 

.90 -1.637991 -0.726035 

.95 -1.737931 -0.617099 

.99 -1.963012 -0.347673 
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