
JSS Journal of Statistical Software
January 2009, Volume 29, Issue 4. http://www.jstatsoft.org/

RinRuby: Accessing the R Interpreter from

Pure Ruby

David B. Dahl
Texas A&M University

Scott Crawford
Texas A&M University

Abstract

RinRuby is a Ruby library that integrates the R interpreter in Ruby, making R’s sta-
tistical routines and graphics available within Ruby. The library consists of a single Ruby
script that is simple to install and does not require any special compilation or installation
of R. Since the library is 100% pure Ruby, it works on a variety of operating systems,
Ruby implementations, and versions of R. RinRuby’s methods are simple, making for
readable code. This paper describes RinRuby usage, provides comprehensive documenta-
tion, gives several examples, and discusses RinRuby’s implementation. The latest version
of RinRuby can be found at the project website: http://rinruby.ddahl.org/.

Keywords: R, Ruby, JRuby, Java, RinRuby.

1. Introduction

Scripting languages such as Ruby, Python, Perl, and PHP are increasingly popular since they
can greatly decrease development time compared to traditional languages, such as C, C++,
and Java. Although many variations exist, scripting languages are high-level programming
languages that typically avoid explicit type declarations, interpret or compile code at run-
time, and focus on simplicity and productivity rather than raw execution speed. Scripting
languages have been particularly successful in tasks such as data extraction, web development,
prototyping, report generation, and combining existing software to accomplish a task.

Ruby is a dynamic scripting language “with a focus on simplicity and productivity. It has an
elegant syntax that is natural to read and easy to write” (Flanagan and Matsumoto 2008).
Ruby supports features such as pure object orientation, closures, and mix-ins. Several im-
plementations are available, the most mature being the reference C implementation, JRuby
(which runs on the Java Virtual Machine), IronRuby (which runs on the .NET Framework), and
Rubinius (an alternative implementation written in Ruby and C). Unfortunately statistical

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Research Papers in Economics

https://core.ac.uk/display/6303241?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
http://www.jstatsoft.org/
http://rinruby.ddahl.org/

2 RinRuby: Accessing the R Interpreter from Pure Ruby

analysis routines and graphing abilities are quite limited in Ruby.

R is a scripting language and environment developed by statisticians for statistical comput-
ing and graphics with a large library of routines (R Development Core Team 2008). R has
many contributors and a large user base which increases confidence in the correctness of the
implementation. The graphing abilities of R are excellent.

This paper describes the RinRuby software, a 100% pure Ruby library that provides a simple
but effective bridge to R from Ruby. Being 100% pure Ruby, RinRuby does not need to be
recompiled with each incremental release of R and Ruby. It allows a statistician to leverage
R’s familiar and comprehensive statistical computing and graphics abilities in the powerful
Ruby scripting language. (Note that RinRuby does not provide access to Ruby from R.)

RinRuby’s design allows R to be accessed from Ruby on any implementation of Ruby using a
standard installation of R on any operating system capable of running R and Ruby (including
Linux, Mac OS X, and Microsoft Windows). This means there is no need to install Ruby or
R with special options. Using RinRuby in JRuby, for example, allows for seamless integration
of Ruby, Java, and R code in one application.

The paper is organized as follows. Section 2 introduces RinRuby basics, including installation
and typical usage. An example using the Gettysburg Address is given in Section 3. Section 4
discusses approaches to making R accessible in a scripting language and details the technique
used by RinRuby. Comprehensive documentation is provided in Section 5, while Section 6
discusses a few caveats related to RinRuby usage. The appendix contains two examples: our
RinRuby translation of Tim Churches’ demonstration of RPy (a similar program that makes
R accessible within Python, see Moreira and Warnes 2008) and an example involving simple
linear regression. The scripts for all the examples are available online along with the paper.

2. Using RinRuby

2.1. Installation

A prerequisite for RinRuby is a working installation of R, but no special compilation flags,
installation procedures, or packages are needed for R. If using the RubyGems system, RinRuby
can be installed by simply executing the following at the operating system’s shell prompt
(denoted $):

$ gem install rinruby

This will download and install the latest version of RinRuby from RubyForge (http://
rubyforge.org/), an archive of Ruby extensions analogous to the Comprehensive R Archive
Network for R. The equivalent call for JRuby is:

$ jruby -S gem install rinruby

If RubyGems is not available, the latest version of the rinruby.rb script can be down-
loaded from the RinRuby webpage (http://rinruby.ddahl.org/) and placed in a directory
in Ruby’s search path (as given by the array $:).

http://rubyforge.org/
http://rubyforge.org/
http://rinruby.ddahl.org/

Journal of Statistical Software 3

2.2. Executing R commands

Regardless of the installation method, RinRuby is invoked within a Ruby script (or the inter-
active "irb" prompt, denoted >>) using:

>> require "rinruby"

The previous statement reads the definition of the RinRuby class into the current Ruby
interpreter and creates an instance of the RinRuby class named R. The eval instance method
passes R commands (contained in the supplied string) and prints the output or displays any
resulting plots. For example:

>> sample_size = 10
>> R.eval "x <- rnorm(#{sample_size})"
>> R.eval "summary(x)"
>> R.eval "sd(x)"

produces the following:

Min. 1st Qu. Median Mean 3rd Qu. Max.
-1.88900 -0.84930 -0.45220 -0.49290 -0.06069 0.78160

[1] 0.7327981

This example uses a string substitution to make the argument of the first eval method
equivalent to x <- rnorm(10). The example uses three invocations of the eval method, but
a single invoke is possible using a here document:

>> sample_size = 10
>> R.eval <<EOF

x <- rnorm(#{sample_size})
summary(x)
sd(x)

EOF

2.3. Pulling data from R to Ruby

Data is copied from R to Ruby using the pull method or a short-hand equivalent. The R
object x defined previously can be copied to the Ruby object copy_of_x as follows:

>> copy_of_x = R.pull "x"
>> puts copy_of_x

which produces the following: (note only the first and last lines are shown)

-0.376404489256671
...

0.781602719849499

4 RinRuby: Accessing the R Interpreter from Pure Ruby

RinRuby also supports a convenient short-hand notation when the argument to pull is simply
a previously-defined R variable (whose name conforms to Ruby’s requirements for method
names). For example:

>> copy_of_x = R.x

The explicit pull method, however, can take an arbitrary R statement. For example:

>> summary_of_x = R.pull "as.numeric(summary(x))"
>> puts summary_of_x

produces the following :

-1.889
-0.8493
-0.4522
-0.4929
-0.06069
0.7816

Notice the use above of the as.numeric function in R. This is necessary since the pull
method only supports R vectors which are numeric (i.e., integers or doubles) or character
(i.e., strings). Data in other formats must be coerced when copying to Ruby.

2.4. Assigning data from Ruby to R

Data is copied from Ruby to R using the assign method or a short-hand equivalent. For
example:

>> names = ["Lisa", "Teasha", "Aaron", "Thomas"]
>> R.assign "people", names
>> R.eval "sort(people)"

produces the following :

[1] "Aaron" "Lisa" "Teasha" "Thomas"

The short-hand equivalent to the assign method is simply:

>> R.people = names

As with the short-hand notation for pull, some care is needed when using the short-hand of
the assign method since the label (i.e., people in this case) must be a valid method name in
Ruby. For example, R.copy.of.names = names will not work, but R.copy_of_names = names
is permissible.

The assign method supports Ruby variables of type Fixnum (i.e., integer), Bignum (i.e. inte-
ger), Float (i.e., double), String, and arrays of one of those four fundamental types. Data
in other formats must be coerced when copying to R. Note that Fixnum or Bignum values that

Journal of Statistical Software 5

exceed the capacity of R’s integers are silently converted to doubles. Data in other formats
must be coerced when copying to R.

When assigning an array containing differing types of variables, RinRuby will follow R’s
conversion conventions. An array that contains any Strings will result in a character vector
in R. If the array does not contain any Strings, but it does contain a Float or a large Integer
(in absolute value), then the result will be a numeric vector of Doubles in R. If there are only
Integers that are sufficiently small (in absolute value), then the result will be a numeric
vector of Integers in R.

3. Demonstration using the Gettysburg Address

The eval, assign, and pull methods are demonstrated in an example using Lincoln’s Get-
tysburg Address. The code is in Table 1 and the output is in Table 2. Two more extensive
examples are given in the Appendix.

Ruby code counts the number of occurrences of each word in the Gettysburg Address and
filters out the words occurring less than three times or shorter than four letters. R code—
through the RinRuby library—produces a bar plot of the most frequent words and computes
the correlation between the length of a word and the usage frequency. Finally, the correlation
is printed by Ruby.

tally = Hash.new(0)
File.open('gettysburg.txt').each_line do |line|
line.downcase.split(/\W+/).each { |w| tally[w] += 1 }

end
total = tally.values.inject { |sum,count| sum + count }
tally.delete_if { |key,count| count < 3 || key.length < 4 }

require "rinruby"
R.keys, R.counts = tally.keys, tally.values

R.eval <<EOF
names(counts) <- keys
barplot(rev(sort(counts)), main = "Frequency of Non-Trivial Words", las = 2)
mtext("Among the #{total} words in the Gettysburg Address", 3, 0.45)
rho <- round(cor(nchar(keys), counts), 4)

EOF

puts "The correlation between length and frequency of words is #{R.rho}."

Table 1: Demonstration of RinRuby using Lincoln’s Gettysburg Address.

6 RinRuby: Accessing the R Interpreter from Pure Ruby

th
at

he
re

na
tio

n

ha
ve

de
di

ca
te

d

th
is

th
ey

gr
ea

t

ca
nn

ot

de
ad

pe
op

le

sh
al

l

Frequency of Non−Trivial Words

0

2

4

6

8

10

12

Among the 271 words in the Gettysburg Address

The correlation between length and frequency of words is −0.2779.

Table 2: Output from the Gettysburg example.

4. Techniques to access R

4.1. Techniques used by existing software

In this section, we review several approaches which could embed R in a scripting language and
we discuss the approach used by RinRuby. Perhaps the most obvious way to use R in a Ruby
script is to: (1) Generate an R script using Ruby code, (2) Run the R script in batch mode
using Ruby’s system method, and (3) Retrieve computations by parsing the resulting Rout file
in Ruby. This method is simple in principle but has at least two deficiencies. First, passing
results and data can require a fair amount of problem-specific coding. The RRb (Nakao
2003) package attempts to ease this difficulty, but currently it is only available for Linux. The
second problem is that each new computation in R requires starting a new instance of the R
interpreter.

Another approach is to write a native-language (i.e., C) extension for Ruby that dynamically
links to R’s shared library. This is the approach taken by RSRuby (Gutteridge 2008) for
Ruby, RSPerl (Temple Lang 2007) for Perl, and RPy (Moreira and Warnes 2008) for Python.
RSRuby is making rapid progress towards seamless integration of Ruby and R and provides

Journal of Statistical Software 7

very fast data access. The disadvantage comes in the fact that the extension is closely tied
to a particular operating system, Ruby implementation, and version of R. For example, users
must compile RSRuby themselves or wait for maintainers to provide binaries for recently
released versions of R and Ruby. Further, RSRuby is currently not available for Windows.
Lastly, the extension is tied to the particular implementation of the Ruby language and is
only a proof-of-concept for alternative implementations of the Ruby language (e.g., JRuby,
IronRuby, and Rubinius).

Another approach to using R within Ruby is the client/server model over TCP/IP sockets.
RServe (Urbanek 2008) uses this method, where R runs as the server for a client application.
This approach is quite efficient and very robust across different systems, platforms, and ver-
sions. Unfortunately only Java and C++ clients are currently implemented; there is no Ruby
implementation.

4.2. Technique used by RinRuby

RinRuby makes use of pipes and TCP/IP sockets to implement its functionality. When the
RinRuby module is loaded via the require "rinruby" statement, RinRuby opens an oper-
ating system pipe to the R interpreter running on the same machine using Ruby’s IO.popen
method. The pipe stays open until the quit method is called or Ruby exits. When RinRuby’s
eval method is called, the statement is passed to R through this pipe. Additionally, another
statement is passed to R that prints a flag signaling that R is done executing. RinRuby prints
all the results from the pipe using Ruby’s puts method until it sees this signal, at which point
the eval method returns.

RinRuby passes data between Ruby and R using TCP/IP sockets on the localhost. Ruby acts
as the server and R acts as the client. Like the pipe, the socket connection stays open until
calling quit or exiting Ruby. When pulling data from R to Ruby, RinRuby writes R statements
to the pipe that causes R to send the data over the socket. Likewise, assigning data from
Ruby to R involves sending R statements through the pipe to receive the data. Passing data
via sockets instead of the pipe enables RinRuby to handle large amounts of data quickly. It
also avoids rounding issues inherent when converting decimals to text and back to decimals
again. Since all the R code needed to implement RinRuby’s functionality is sent via the pipe,
there is no need to install any RinRuby-specific packages in R.

5. Comprehensive documentation

5.1. Instantiating a RinRuby object

RinRuby is invoked within a Ruby script (or the interactive “irb” prompt denoted >>) using:

>> require "rinruby"

This reads the definition of the RinRuby class into the current Ruby interpreter and creates
an instance of the RinRuby class named R. An instance of the RinRuby class can also be
created using the new constructor. For example:

>> require "rinruby"

8 RinRuby: Accessing the R Interpreter from Pure Ruby

>> myr = RinRuby.new
>> myr.eval "rnorm(1)"

Any number of independent instances of R can be created in this way.

The following parameters can be passed to the constructor:

RinRuby.new(echo = true, interactive = true, executable = nil,
port_number = 38442, port_width = 1000)

� echo: By setting the echo to false, output from R is suppressed, although warnings
may still print. This option can be changed later by using the echo method which is
explained below. The default is true.

� interactive: When interactive is false, R is run in non-interactive mode, resulting
in plots without an explicit device being written to Rplots.pdf. Otherwise, when
interactive is true, such plots are shown on the screen. The default is true.

� executable: The path of the R executable (which is R in Linux and Mac OS X, or
Rterm.exe in Windows) can be set with the executable argument. The default is nil
which makes RinRuby use the registry keys to find the path (on Windows) or use the
path defined by $PATH (on Linux and Mac OS X).

� port_number: This is the smallest port number on the local host that could be used to
pass data between Ruby and R. The actual port number used depends on port_width
described below.

� port_width: RinRuby will randomly select a uniform number between port_number
and port_number + port_width − 1 (inclusive) to pass data between Ruby and R. If
the randomly selected port is not available, RinRuby will continue selecting random
ports until it finds one that is available. By setting port_width to 1, RinRuby will
wait until port_number is available. The default port_width is 1000.

It may be desirable to change the parameters to the instance of R, but still name the object R.
In that case the old instance of R which was created with the require "rinruby" statement
should be closed first using the quit method which is explained below. Unless the previous
instance is killed, it will continue to use system resources until exiting Ruby. The following
shows an example that explicitly sets the echo argument:

>> require "rinruby"
>> R.quit
>> R = RinRuby.new(false)

5.2. The “echo” method

The echo method controls whether the eval method displays output and warnings from R.
The echo method has two parameters:

echo(enable = nil, stderr = nil)

Journal of Statistical Software 9

� enable: Setting enable to false will turn all output off until the echo method is used
again with enable equal to true. The default is nil, which will return the current
setting.

� stderr: Setting stderr to true will force messages, warnings, and errors from R to
be routed through stdout. Using stderr redirection is typically not needed for the C
implementation of Ruby and is thus not enabled by default for this implementation. It
is typically necessary for JRuby and is enabled by default in this case. This redirection
works well in practice but it can lead to interleaving output which may confuse RinRuby.
In such cases, stderr redirection should not be used. Echoing must be enabled when
using stderr redirection.

5.3. The “eval” method

The eval method is used to send commands to the R instance. The method has two param-
eters:

eval(string, echo_override = nil)

� string: The string parameter is the code which is to be passed to R, for example,
"hist(gamma(1000,5,3))". The string can contain many lines by use of a here doc-
ument. For example:

R.eval <<EOF
x <- rgamma(1000, 5, 3)
hist(x)

EOF

� echo_override: This argument allows one to set the echo behavior for this call only.
The default for echo_override is nil, which does not override the current echo behav-
ior.

The return value of the eval method is true unless the statement could not be parsed as a
valid R expression. In this case, an exception is raised. See Section 6 for examples of code
that would raise an exception from the eval method.

5.4. The “assign” method

The assign method is used to send data from Ruby to R and has three parameters:

assign(name, value, as_integer = false)

� name: The name of the R variable.

� value: The value the R variable should have. The assign method supports Ruby vari-
ables of type Fixnum (i.e., integer), Bignum (i.e., integer), Float (i.e., double), String,
and arrays of one of those three fundamental types. Note that Fixnum or Bignum values
that exceed the capacity of R’s integers are silently converted to doubles. Data in other
formats must be coerced when copying to R.

10 RinRuby: Accessing the R Interpreter from Pure Ruby

The assign method is an alternative to the simplified method, with some additional flexibility.
When using the simplified method, the parameters of name and value are automatically used.
For example, the code:

>> R.test = 144

is the same as:

>> R.assign("test", 144)

The shorthand notation cannot be used to assign a variable named eval, echo, or another
already used method name. RinRuby would assume the method was being called, rather than
assigning a variable.

When assigning an array containing differing types of variables, RinRuby will follow R’s
conversion conventions. An array that contains any Strings will result in a character vector
in R. If the array does not contain any Strings, but it does contain a Float or a large integer
(in absolute value), then the result will be a numeric vector of Doubles in R. If there are only
integers that are sufficiently small (in absolute value), then the result will be a numeric vector
of integers in R.

5.5. The “pull” method

The pull method is used to pass data from R into Ruby. There are two parameters for the
pull method:

pull(string, singletons = false)

� string: The name of the variable that should be pulled from R. The pull method
only supports R vectors which are numeric (i.e., integers or doubles) or character (i.e.,
strings). The R value of NA is pulled as nil into Ruby. Data in other formats must be
coerced when copying to Ruby.

� singletons: R represents a single number as a vector of length one, but in Ruby it
is often more convenient to use a number rather than an array of length one. Setting
singletons = false will cause the pull method to shed the array, while singletons
= true will return the number or string within an array. The default is false.

The pull method is an alternative to the simplified form where the parameters are automat-
ically used. For example, the code:

>> puts R.test

is the same as:

>> puts R.pull("test")

As is the case with the assign method, the shorthand notation cannot be used on a variable
which shares a name with another method.

Journal of Statistical Software 11

5.6. The “prompt” method

When sending code to Ruby using an interactive prompt (i.e., "irb"), this method will change
the Ruby prompt to an R prompt. From the R prompt, commands can be sent to R as if R
were run natively. When the user is ready to return to Ruby, then exit() will return the
prompt to Ruby. The prompt method is useful when exploring with several lines of code since
results are displayed immediately. It should be noted that the prompt command does not
work in a script, just Ruby’s interactive irb.

The prompt command has two parameters:

prompt(regular_prompt = "> ", continue_prompt = "+ ")

� regular_prompt: This defines the string used to denote the R prompt.

� continue_prompt: This is the string used to denote R’s prompt for an incomplete
statement (such as a multiple line loop).

5.7. The “quit” method

The quit method will properly close the bridge between Ruby and R, freeing up system
resources. This method does not need to be run when a Ruby script ends. There are no
parameters in the quit method.

6. Caveats

The assign method supports Ruby variables and arrays of type Fixnum, Bignum, Float, or
String, while the pull method supports R vectors which are numeric or character. There
is no technical limitation prohibiting pulling or assigning other data types, and we encourage
contributions to extend the data types supported by RinRuby.

We recommend using RinRuby on R version 2.7.0 or higher, which provides the
"--interactive" command line argument for Linux and Mac OS X. If a user has version
2.6.2 or earlier, then the plots will not show up on the screen as usual. A warning will appear
saying, "unknown option '--interactive'" and plots will be saved to the Rplots.ps file.

R commands sent by RinRuby’s eval method should be complete expressions. If R cannot
parse the command as a complete expression, the eval method will raise an exception. For
example:

>> R.eval "paste('answer, x)"

will raise an exception indicating a parse error. Another manifestation of the same problem
is in the following code:

>> R.x = 2
>> R.eval "for (i in 1:10) {"
>> R.eval " x <- x + 1"
>> R.eval "}"

12 RinRuby: Accessing the R Interpreter from Pure Ruby

The code will raise an exception for each of three statements in the for loop since none of
them can be considered a complete expression alone. There are two ways to avoid this issue.
One way is to use the prompt method while running Ruby interactively. The other way is to
use a here document, as shown:

>> R.x = 2
>> R.eval <<EOF

for(i in 1:10){
x <- x + 1

}
EOF

Acknowledgments

The authors gratefully acknowledge Marina Vannucci of Rice University for her generous
support of the second author. The authors also thank and the editor Jan de Leeuw as well
as the two anonymous referees for their suggestions which substantially improved the paper
and RinRuby.

References

Flanagan D, Matsumoto Y (2008). The Ruby Programming Language. O’Reilly Media, Inc.
ISBN 10: 0-596-51617-7, URL http://www.ruby-lang.org/.

Gutteridge A (2008). “RSRuby: A Bridge Between Ruby and the R Interpreted Language.”
Ruby package version 0.5.1, URL http://rubyforge.org/projects/rsruby/.

Moreira W, Warnes GR (2008). “RPy: A Simple and Efficient Access to R from Python.”
Version 1.0.3, URL http://rpy.sourceforge.net/.

Nakao MC (2003). “RRb: A Very Simple Ruby Interface to the R Statistical Computing
Language.” URL http://sourceforge.net/projects/rrb/.

R Development Core Team (2008). R: A Language and Environment for Statistical Computing.
R Foundation for Statistical Computing, Vienna, Austria. ISBN 3-900051-07-0, URL http:
//www.R-project.org.

Temple Lang D (2007). “RSPerl: The R/S-PLUS–Perl Interface.” R package version 0.92-1,
URL http://www.omegahat.org/RSPerl/.

Urbanek S (2008). Rserve: Binary R Server. R package version 0.5-2, URL http://CRAN.
R-project.org/package=Rserve.

http://www.ruby-lang.org/
http://rubyforge.org/projects/rsruby/
http://rpy.sourceforge.net/
http://sourceforge.net/projects/rrb/
http://www.R-project.org
http://www.R-project.org
http://www.omegahat.org/RSPerl/
http://CRAN.R-project.org/package=Rserve
http://CRAN.R-project.org/package=Rserve

Journal of Statistical Software 13

A. RinRuby implementation of an example from Tim Churches

Here we provide a side-by-side comparison of Tim Churches’ demonstration of RPy for Python
(http://rpy.sourceforge.net/rpy_demo.html) and our implementation using RinRuby for
Ruby. The code in Tables 3 and 4 analyzes data on the Old Faithful geyser in Yellowstone
National Park. The code illustrates the ease and power of RinRuby as well as its methods.
The output from both scripts is the same, except that RinRuby maintains the order of the
summary statistics while RPy changes the order. The output shown in Table 5 is from
RinRuby as is Figure 1.

Old Faithful eruptions

Eruption duration (seconds)

D
en

si
ty

1.5 2.0 2.5 3.0 3.5 4.0 4.5 5.0

0.
0

0.
1

0.
2

0.
3

0.
4

0.
5

0.
6

0.
7

3.0 3.5 4.0 4.5 5.0

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

Empirical cumulative distribution function of Old Faithful eruptions longer than 3 seconds

x

F
n(

x)

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

−2 −1 0 1 2

3.
0

3.
5

4.
0

4.
5

5.
0

Normal Q−Q Plot

Theoretical Quantiles

S
am

pl
e

Q
ua

nt
ile

s

Figure 1: Plots from the Tim Churches example.

http://rpy.sourceforge.net/rpy_demo.html

14 RinRuby: Accessing the R Interpreter from Pure Ruby

r
e
q
u
i
r
e

"
r
i
n
r
u
b
y
"

f
a
i
t
h
f
u
l
_
d
a
t
a

=
{
"
e
r
u
p
t
i
o
n
_
d
u
r
a
t
i
o
n
"
=
>
[
]
,

"
w
a
i
t
i
n
g
_
t
i
m
e
"
=
>
[
]
}

f
o
r

r
o
w

i
n
F
i
l
e
.
r
e
a
d
l
i
n
e
s
(
'
f
a
i
t
h
f
u
l
.
d
a
t
'
)
[
1
.
.
-
1
]

s
p
l
i
t
r
o
w
=

r
o
w
.
c
h
o
m
p
.
s
p
l
i
t

f
a
i
t
h
f
u
l
_
d
a
t
a
[
"
e
r
u
p
t
i
o
n
_
d
u
r
a
t
i
o
n
"
]
<
<

s
p
l
i
t
r
o
w
[
0
]
.
t
o
_
f

f
a
i
t
h
f
u
l
_
d
a
t
a
[
"
w
a
i
t
i
n
g
_
t
i
m
e
"
]

<
<
s
p
l
i
t
r
o
w
[
1
]
.
t
o
_
i

e
n
d

R
.
e
d

=
f
a
i
t
h
f
u
l
_
d
a
t
a
[
"
e
r
u
p
t
i
o
n
_
d
u
r
a
t
i
o
n
"
]

R
.
e
v
a
l

"
e
d
s
u
m
m
a
r
y

<
-
s
u
m
m
a
r
y
(
e
d
)
"

e
d
s
u
m
m
a
r
y

=
R
.
p
u
l
l
(
"
a
s
.
v
e
c
t
o
r
(
e
d
s
u
m
m
a
r
y
)
"
)

k
e
y
s

=
R
.
p
u
l
l
(
"
n
a
m
e
s
(
e
d
s
u
m
m
a
r
y
)
"
)

p
u
t
s

"
S
u
m
m
a
r
y
o
f

O
l
d

F
a
i
t
h
f
u
l

e
r
u
p
t
i
o
n

d
u
r
a
t
i
o
n

d
a
t
a
"

k
e
y
s
.
e
a
c
h
_
i
n
d
e
x
d
o

|
i
|

p
u
t
s

"
#
{
k
e
y
s
[
i
]
}
:
#
{
s
p
r
i
n
t
f
(
'
%
.
3
f
'
,

e
d
s
u
m
m
a
r
y
[
i
]
)
}
"

e
n
d

p
u
t
s

p
u
t
s

"
S
t
e
m
-
a
n
d
-
l
e
a
f
p
l
o
t

o
f
O
l
d
F
a
i
t
h
f
u
l

e
r
u
p
t
i
o
n
d
u
r
a
t
i
o
n

d
a
t
a
"

R
.
e
v
a
l

"
s
t
e
m
(
e
d
)
"

R
.
e
v
a
l

<
<
E
O
F

p
n
g
(
"
f
a
i
t
h
f
u
l
_
h
i
s
t
o
g
r
a
m
.
p
n
g
"
,

w
i
d
t
h
=
1
0
,
h
e
i
g
h
t
=
7
.
5
)

h
i
s
t
(
e
d
,
s
e
q
(
1
.
6
,

5
.
2
,

0
.
2
)
,

p
r
o
b

=
1
,
c
o
l

=
"
l
i
g
h
t
g
r
e
e
n
"
,

m
a
i
n

=
"
O
l
d

F
a
i
t
h
f
u
l

e
r
u
p
t
i
o
n
s
"
,
x
l
a
b

=
"
E
r
u
p
t
i
o
n

d
u
r
a
t
i
o
n
(
s
e
c
o
n
d
s
)
"
)

l
i
n
e
s
(
d
e
n
s
i
t
y
(
e
d
,

b
w

=
0
.
1
)
,

c
o
l
=

"
o
r
a
n
g
e
"
)

r
u
g
(
e
d
)

d
e
v
.
o
f
f
(
)

E
O
F

f
r
o
m

r
p
y

i
m
p
o
r
t

*

f
a
i
t
h
f
u
l
_
d
a
t
a

=
{
"
e
r
u
p
t
i
o
n
_
d
u
r
a
t
i
o
n
"
:
[
]
,

"
w
a
i
t
i
n
g
_
t
i
m
e
"
:
[
]
}

f
=
o
p
e
n
(
'
f
a
i
t
h
f
u
l
.
d
a
t
'
,
'
r
'
)

f
o
r

r
o
w

i
n
f
.
r
e
a
d
l
i
n
e
s
(
)
[
1
:
]
:

#
s
k
i
p
t
h
e
c
o
l
u
m
n
h
e
a
d
e
r

l
i
n
e

s
p
l
i
t
r
o
w

=
r
o
w
[
:
-
1
]
.
s
p
l
i
t
(
"
"
)

f
a
i
t
h
f
u
l
_
d
a
t
a
[
"
e
r
u
p
t
i
o
n
_
d
u
r
a
t
i
o
n
"
]
.
a
p
p
e
n
d
(
f
l
o
a
t
(
s
p
l
i
t
r
o
w
[
0
]
)
)

f
a
i
t
h
f
u
l
_
d
a
t
a
[
"
w
a
i
t
i
n
g
_
t
i
m
e
"
]
.
a
p
p
e
n
d
(
i
n
t
(
s
p
l
i
t
r
o
w
[
1
]
)
)

f
.
c
l
o
s
e
(
)

e
d
=

f
a
i
t
h
f
u
l
_
d
a
t
a
[
"
e
r
u
p
t
i
o
n
_
d
u
r
a
t
i
o
n
"
]

e
d
s
u
m
m
a
r
y
=

r
.
s
u
m
m
a
r
y
(
e
d
)

p
r
i
n
t
"
S
u
m
m
a
r
y

o
f
O
l
d
F
a
i
t
h
f
u
l

e
r
u
p
t
i
o
n
d
u
r
a
t
i
o
n

d
a
t
a
"

f
o
r

k
i
n

e
d
s
u
m
m
a
r
y
.
k
e
y
s
(
)
:

p
r
i
n
t
k

+
"
:

%
.
3
f
"

%
e
d
s
u
m
m
a
r
y
[
k
]

p
r
i
n
t

p
r
i
n
t
"
S
t
e
m
-
a
n
d
-
l
e
a
f

p
l
o
t

o
f

O
l
d
F
a
i
t
h
f
u
l

e
r
u
p
t
i
o
n
d
u
r
a
t
i
o
n

d
a
t
a
"

p
r
i
n
t
r
.
s
t
e
m
(
e
d
)

r
.
p
n
g
(
'
f
a
i
t
h
f
u
l
_
h
i
s
t
o
g
r
a
m
.
p
n
g
'
,

w
i
d
t
h
=
7
3
3
,

h
e
i
g
h
t
=
5
5
0
)

r
.
h
i
s
t
(
e
d
,

r
.
s
e
q
(
1
.
6
,

5
.
2
,
0
.
2
)
,

p
r
o
b

=
1
,
c
o
l

=
"
l
i
g
h
t
g
r
e
e
n
"
,

m
a
i
n

=
"
O
l
d

F
a
i
t
h
f
u
l

e
r
u
p
t
i
o
n
s
"
,
x
l
a
b

=
"
E
r
u
p
t
i
o
n

d
u
r
a
t
i
o
n
(
s
e
c
o
n
d
s
)
"
)

r
.
l
i
n
e
s
(
r
.
d
e
n
s
i
t
y
(
e
d
,
b
w

=
0
.
1
)
,

c
o
l

=
"
o
r
a
n
g
e
"
)

r
.
r
u
g
(
e
d
)

r
.
d
e
v
_
o
f
f
(
)

T
able

3:
R
u
by

(left)
and

P
yth

on
(right)

code
for

the
T

im
C

hurches’
exam

ple.

Journal of Statistical Software 15

c
u
t
o
f
f

=
3

R
.
l
o
n
g
_
e
d

=
R
.
e
d
.
d
e
l
e
t
e
_
i
f
{

|
x
|
x

<
=
c
u
t
o
f
f
}

R
.
e
v
a
l

<
<
E
O
F

p
n
g
(
'
f
a
i
t
h
f
u
l
_
e
c
d
f
.
p
n
g
'
,

w
i
d
t
h

=
1
0
,

h
e
i
g
h
t

=
7
.
5
)

#
l
i
b
r
a
r
y
(
s
t
e
p
f
u
n
)

#
p
a
c
k
a
g
e

h
a
s

b
e
e
n

m
e
r
g
e
d

i
n
t
o
'
s
t
a
t
s
'

p
l
o
t
(
e
c
d
f
(
l
o
n
g
_
e
d
)
,

d
o
.
p
o
i
n
t
s
=
0
,
v
e
r
t
i
c
a
l
s
=

1
,

m
a
i
n

=
p
a
s
t
e
(
'
E
m
p
i
r
i
c
a
l
c
u
m
u
l
a
t
i
v
e

d
i
s
t
r
i
b
u
t
i
o
n
f
u
n
c
t
i
o
n

o
f
O
l
d
'
,

'
F
a
i
t
h
f
u
l

e
r
u
p
t
i
o
n
s

l
o
n
g
e
r

t
h
a
n

#
{
c
u
t
o
f
f
}

s
e
c
o
n
d
s
'
)
)

x
<
-

s
e
q
(
3
,

5
.
4
,

0
.
0
1
)

l
i
n
e
s
(
s
e
q
(
3
,
5
.
4
,

0
.
0
1
)
,

p
n
o
r
m
(
s
e
q
(
3
,
5
.
4
,

0
.
0
1
)
,

m
e
a
n

=
m
e
a
n
(
l
o
n
g
_
e
d
)
,

s
d
=

s
q
r
t
(
v
a
r
(
l
o
n
g
_
e
d
)
)
)
,

l
t
y

=
3
,

l
w
d

=
2
,

c
o
l

=
'
r
e
d
'
)

d
e
v
.
o
f
f
(
)

p
n
g
(
'
f
a
i
t
h
f
u
l
_
q
q
.
p
n
g
'
,

w
i
d
t
h

=
1
0
,

h
e
i
g
h
t

=
7
.
5
)

p
a
r
(
p
t
y

=
"
s
"
)

q
q
n
o
r
m
(
l
o
n
g
_
e
d
,
c
o
l
=

"
b
l
u
e
"
)

q
q
l
i
n
e
(
l
o
n
g
_
e
d
,
c
o
l
=

"
r
e
d
"
)

d
e
v
.
o
f
f
(
)

E
O
F

#
R
.
e
v
a
l

"
l
i
b
r
a
r
y
(
'
c
t
e
s
t
'
)
"

#
p
a
c
k
a
g
e

h
a
s

b
e
e
n

m
e
r
g
e
d

i
n
t
o
'
s
t
a
t
s
'

p
u
t
s

p
u
t
s

"
S
h
a
p
i
r
o
-
W
i
l
k
s
n
o
r
m
a
l
i
t
y

t
e
s
t
o
f

O
l
d

F
a
i
t
h
f
u
l
e
r
u
p
t
i
o
n
s
"
+

"
l
o
n
g
e
r

t
h
a
n

#
{
c
u
t
o
f
f
}

s
e
c
o
n
d
s
"

R
.
e
v
a
l
"
s
w
<
-

s
h
a
p
i
r
o
.
t
e
s
t
(
l
o
n
g
_
e
d
)
"

p
u
t
s

"
W

=
#
{
s
p
r
i
n
t
f
(
"
%
.
4
f
"
,

R
.
p
u
l
l
(
"
s
w
$
s
t
a
t
i
s
t
i
c
"
)
)
}
"

p
u
t
s

"
p
-
v
a
l
u
e
=

#
{
s
p
r
i
n
t
f
(
"
%
.
5
f
"
,

R
.
p
u
l
l
(
"
s
w
$
p
.
v
a
l
u
e
"
)
)
}
"

p
u
t
s

p
u
t
s

"
O
n
e
-
s
a
m
p
l
e
K
o
l
m
o
g
o
r
o
v
-
S
m
i
r
n
o
v

t
e
s
t

o
f

O
l
d

F
a
i
t
h
f
u
l
e
r
u
p
t
i
o
n
s
"
+

"
l
o
n
g
e
r

t
h
a
n

#
{
c
u
t
o
f
f
}

s
e
c
o
n
d
s
"

R
.
e
v
a
l
"
k
s
<
-

k
s
.
t
e
s
t
(
l
o
n
g
_
e
d
,
'
p
n
o
r
m
'
,

m
e
a
n
=
m
e
a
n
(
l
o
n
g
_
e
d
)
,
"
+

"
s
d

=
s
q
r
t
(
v
a
r
(
l
o
n
g
_
e
d
)
)
)
"

p
u
t
s

"
D

=
#
{
s
p
r
i
n
t
f
(
"
%
.
4
f
"
,

R
.
p
u
l
l
(
"
k
s
$
s
t
a
t
i
s
t
i
c
"
)
)
}
"

p
u
t
s

"
p
-
v
a
l
u
e
=

#
{
s
p
r
i
n
t
f
(
"
%
.
4
f
"
,

R
.
p
u
l
l
(
"
k
s
$
p
.
v
a
l
u
e
"
)
)
}
"

p
u
t
s

"
A
l
t
e
r
n
a
t
i
v
e

h
y
p
o
t
h
e
s
i
s
:

#
{
R
.
p
u
l
l
(
"
k
s
$
a
l
t
e
r
n
a
t
i
v
e
"
)
}
"

p
u
t
s

l
o
n
g
_
e
d

=
f
i
l
t
e
r
(
l
a
m
b
d
a
x
:

x
>

3
,

e
d
)

r
.
p
n
g
(
'
f
a
i
t
h
f
u
l
_
e
c
d
f
.
p
n
g
'
,

w
i
d
t
h

=
7
3
3
,

h
e
i
g
h
t

=
5
5
0
)

r
.
l
i
b
r
a
r
y
(
'
s
t
e
p
f
u
n
'
)

r
.
p
l
o
t
(
r
.
e
c
d
f
(
l
o
n
g
_
e
d
)
,

d
o
_
p
o
i
n
t
s

=
0
,

v
e
r
t
i
c
a
l
s
=

1
,
c
o
l
=

"
b
l
u
e
"
,

m
a
i
n

=
p
a
s
t
e
(
"
E
m
p
i
r
i
c
a
l
c
u
m
u
l
a
t
i
v
e
d
i
s
t
r
i
b
u
t
i
o
n

f
u
n
c
t
i
o
n
"
,

"
o
f

O
l
d

F
a
i
t
h
f
u
l

e
r
u
p
t
i
o
n
s

l
o
n
g
e
r

t
h
a
n

3
s
e
c
o
n
d
s
"
)

x
=
r
.
s
e
q
(
3
,

5
.
4
,

0
.
0
1
)

r
.
l
i
n
e
s
(
r
.
s
e
q
(
3
,

5
.
4
,

0
.
0
1
)
,

r
.
p
n
o
r
m
(
r
.
s
e
q
(
3
,

5
.
4
,

0
.
0
1
)
,

m
e
a
n

=
r
.
m
e
a
n
(
l
o
n
g
_
e
d
)
,
s
d

=
r
.
s
q
r
t
(
r
.
v
a
r
(
l
o
n
g
_
e
d
)
)
)
,

l
t
y

=
3
,

l
w
d

=
2
,

c
o
l

=
"
r
e
d
"
)

r
.
d
e
v
_
o
f
f
(
)

r
.
p
n
g
(
'
f
a
i
t
h
f
u
l
_
q
q
.
p
n
g
'
,

w
i
d
t
h

=
7
3
3
,

h
e
i
g
h
t

=
5
5
0
)

r
.
p
a
r
(
p
t
y
=

"
s
"
)

r
.
q
q
n
o
r
m
(
l
o
n
g
_
e
d
,
c
o
l

=
"
b
l
u
e
"
)

r
.
q
q
l
i
n
e
(
l
o
n
g
_
e
d
,
c
o
l

=
"
r
e
d
"
)

r
.
d
e
v
_
o
f
f
(
)

r
.
l
i
b
r
a
r
y
(
'
c
t
e
s
t
'
)

p
r
i
n
t

p
r
i
n
t
(
"
S
h
a
p
i
r
o
-
W
i
l
k
s

n
o
r
m
a
l
i
t
y

t
e
s
t

o
f

O
l
d

F
a
i
t
h
f
u
l

e
r
u
p
t
i
o
n
s
"
+
\

"
l
o
n
g
e
r

t
h
a
n

3
s
e
c
o
n
d
s
"
)

s
w
=

r
.
s
h
a
p
i
r
o
_
t
e
s
t
(
l
o
n
g
_
e
d
)

p
r
i
n
t
"
W

=
%
.
4
f
"

%
s
w
[
'
s
t
a
t
i
s
t
i
c
'
]
[
'
W
'
]

p
r
i
n
t
"
p
-
v
a
l
u
e

=
%
.
5
f
"

%
s
w
[
'
p
.
v
a
l
u
e
'
]

p
r
i
n
t

p
r
i
n
t
(
"
O
n
e
-
s
a
m
p
l
e

K
o
l
m
o
g
o
r
o
v
-
S
m
i
r
n
o
v

t
e
s
t

o
f
O
l
d
F
a
i
t
h
f
u
l

e
r
u
p
t
i
o
n
s
"

+
\

"
l
o
n
g
e
r

t
h
a
n

3
s
e
c
o
n
d
s
"

k
s
=

r
.
k
s
_
t
e
s
t
(
l
o
n
g
_
e
d
,
"
p
n
o
r
m
"
,

m
e
a
n

=
r
.
m
e
a
n
(
l
o
n
g
_
e
d
)
,

s
d
=

r
.
s
q
r
t
(
r
.
v
a
r
(
l
o
n
g
_
e
d
)
)
)

p
r
i
n
t
"
D

=
%
.
4
f
"

%
k
s
[
'
s
t
a
t
i
s
t
i
c
'
]
[
'
D
'
]

p
r
i
n
t
"
p
-
v
a
l
u
e

=
%
.
4
f
"

%
k
s
[
'
p
.
v
a
l
u
e
'
]

p
r
i
n
t
"
A
l
t
e
r
n
a
t
i
v
e

h
y
p
o
t
h
e
s
i
s
:
%
s
"
%

k
s
[
'
a
l
t
e
r
n
a
t
i
v
e
'
]

p
r
i
n
t

T
ab

le
4:

R
u
by

(l
ef

t)
an

d
P
yt

h
on

(r
ig

ht
)

co
de

fo
r

th
e

T
im

C
hu

rc
he

s’
ex

am
pl

e.

16 RinRuby: Accessing the R Interpreter from Pure Ruby

Summary of Old Faithful eruption duration data
Min.: 1.600
1st Qu.: 2.163
Median: 4.000
Mean: 3.488
3rd Qu.: 4.454
Max.: 5.100

Stem-and-leaf plot of Old Faithful eruption duration data

The decimal point is 1 digit(s) to the left of the |

16 | 070355555588
18 | 000022233333335577777777888822335777888
20 | 00002223378800035778
22 | 0002335578023578
24 | 00228
26 | 23
28 | 080
30 | 7
32 | 2337
34 | 250077
36 | 0000823577
38 | 2333335582225577
40 | 0000003357788888002233555577778
42 | 03335555778800233333555577778
44 | 02222335557780000000023333357778888
46 | 0000233357700000023578
48 | 00000022335800333
50 | 0370

Shapiro-Wilks normality test of Old Faithful eruptions longer than 3 seconds
W = 0.9793
p-value = 0.01052

One-sample Kolmogorov-Smirnov test of Old Faithful eruptions longer than
3 seconds
D = 0.0661
p-value = 0.4284
Alternative hypothesis: two-sided

Table 5: Output from the Tim Churches’ example.

Journal of Statistical Software 17

B. A simple linear regression example

As another example of RinRuby usage, Table 6 shows the usage of RinRuby for simple linear
regression. The simulation parameters are defined in Ruby, computations are performed in R,
and Ruby reports the results. In a more elaborate application, the simulation parameter could
be input from a graphical user interface, the statistical analysis might be more involved, and
the results could be an HTML page or PDF report.

require "rinruby"

n = 10
beta_0 = 1
beta_1 = 0.25
alpha = 0.05
seed = 23423

R.x = (1..n).entries
R.eval <<EOF
set.seed(#{seed})
y <- #{beta_0} + #{beta_1}*x + rnorm(#{n})
fit <- lm(y ~ x)
est <- round(coef(fit),3)
pvalue <- summary(fit)$coefficients[2, 4]

EOF

puts "E(y|x) ~= #{R.est[0]} + #{R.est[1]} * x"
if R.pvalue < alpha
puts "Reject the null hypothesis and conclude that x and y are related."

else
puts "There is insufficient evidence to conclude that x and y are related."

end
\end{verbatim}
%\vspace{4ex}

E(y|x) ∼= 1.264 + 0.273 ∗ x
Reject the null hypothesis and conclude that x and y are related.

Table 6: Demonstration of RinRuby for regression.

18 RinRuby: Accessing the R Interpreter from Pure Ruby

Affiliation:

David B. Dahl
Assistant Professor
Department of Statistics
Texas A&M University
3134 TAMU
College Station, Texas 77840, United States of America
E-mail: dahl@stat.tamu.edu
URL: http://www.stat.tamu.edu/~dahl/

Scott Crawford
Ph.D. Candidate
Department of Statistics
Texas A&M University
3134 TAMU
College Station, Texas 77840, United States of America
E-mail: crawford@stat.tamu.edu
URL: http://www.stat.tamu.edu/~crawford/

Journal of Statistical Software http://www.jstatsoft.org/
published by the American Statistical Association http://www.amstat.org/

Volume 29, Issue 4 Submitted: 2008-07-03
January 2009 Accepted: 2008-11-26

mailto:dahl@stat.tamu.edu
http://www.stat.tamu.edu/~dahl/
mailto:crawford@stat.tamu.edu
http://www.stat.tamu.edu/~crawford/
http://www.jstatsoft.org/
http://www.amstat.org/

	Introduction
	Using RinRuby
	Installation
	Executing R commands
	Pulling data from R to Ruby
	Assigning data from Ruby to R

	Demonstration using the Gettysburg Address
	Techniques to access R
	Techniques used by existing software
	Technique used by RinRuby

	Comprehensive documentation
	Instantiating a RinRuby object
	The ``echo'' method
	The ``eval'' method
	The ``assign'' method
	The ``pull'' method
	The ``prompt'' method
	The ``quit'' method

	Caveats
	RinRuby implementation of an example from Tim Churches
	A simple linear regression example

