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STATE AND DEVELOPMENT OF FLUTTER CALCULAIION*
By A. Teichmann

I. FUNDAMENTAIS OF APPROACH TO THE PROBLEM

A. General Trestment

Schwarzmenn's expositions showed the flutter problem to be of
such outstanding Importance that the large amount of work for years
expended on 1t seems more than Justified. Nevertheless, the question
arises of whether it is not sufficient to eliminate the danger of
flutter by simply obeylng & number of simple and generally known
rules for the design, for lnstance avoldlng rearward positions of
the center of gravity, ldentifying the separate naturel frequencies
of aerodynamically essentlal component systems, obtalning rigid con-
structions free from play, etc.

The strict observance of such rules for deseign causes, however,
in meny ways, structural limitations which are by no means necessery.
Figure 1 shows, for instance, the critical speed of a wing as &
function of the natural frequency of the control surface. According
to the rule of design, equality of frequencles between control surface
and wing (mp = ®p) ought ebsolutely to be avoided. However, this
would be Justified only for the model at the right of figure 1, "model
in the sense of the two-dimensional problem," whereas for the "actual
wing" et the left there is no cbjection whatsoever to equality of
frequencies, since the critical speed there showe only an insignificant
reduction compared to the case of vanishing control stiffness which
must be taken into account, anyway.

On the other hend, however, there also exists the possibility of
flutter occurring in spite of optimm observance of the design rules.
Flgure 2 shows the criticael speed of a power-controlled auxiliery-
control-surface arrangement as a function of the position of the
control-surface center of gravity. Even for mass-balanced control
surface, eand all the more for forward poslitions of the center of
gravity, this system flutters at a relatively low critical velocity,

#"'Stand und Entwicklung der Flatterberechnung." Iilienthal-Gesellschaft
fur Luftfehrtforschung Bericht 135, pp. 11-20. (This paper was
presented at the conference on wing and teill-surfaece oscillations,
Mexch 6-8, 1941.)
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elthough the fin-bending frequency ie 32 percent above the auxiliary-
control-surface frequency; and Just for rearward positions of the
center of gravity the system exhibite a - insignificant, but still
existing - region free from flutter.

Exemples of the type mentioned demonstrate the necessity of
undertaking en Individually prepared investigation of its flutter
characteristics for every airplane design.

B. Indlvidual Treatment ) -

In evaluating such individual investigations, it must be noted
that far most paremeters on which the flutter characteristics of an
airplane design depend, relisble numericel values ere not availeble.
This applies especially to control stiffnesses and control masses,
to torsional stiffnesses of wing and fins which very according to
preloading and corresponding distortion (or wrinkling); asbove all,
however, 1t applies, to the parameters in the air-force law and to
the structurel-member demping.

Moreover, the separate comstruction data for an airplane design
change repeatedly, particularly at the initial stage where the flutter
investigation must start if it i1s to affect the comstruction at all.
Later on, too, many comstruction parameters fluctuate considersbly
due to tolerances or to subsequent modifications as they are required
according to flight tests, that 1s, changes in the tall surfaces,
lengthening of the fuselage, displacement of the control-surface
center of gravity, variatlons of aerodynamic control-surface balance,
etc.

On the other hand, one must consider how ebruptly a comstruction
mey pess from a flutter-safe to a flutter-dangerous state When a
parameter is changed. (Bee fig. 3.) Accordingly, it would be funda-
mentally wrong to "tallor" a flutter investigation only to one partic-
ular combination of individual design parameters without considering
whether perhaps & parameter combinstion with distinctly unfavorable
flutter characteristics 1s approached. A meaningful flutter investi-
gation must therefore comprehend, on principle, the entire renges
within which the uncertain deslgn parameters may possibly lie.

Of course, such "variational considerations" are necessary also
when 1t is a question of finding the optimum design arrangement, for
instence the optimum position of split tall surfaces, the optimum
degree of control-surface mass balance, or the most suitdble arrange-
ment of an aerodynamic control-surface balance.
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In view of the work expenditure on a consclentious flutter investi-
gation, researchers have probaebly pondered before whether it would not
be advisable to set up detalled curve tebles from which to take quickly
the flutter characteristics of any comstruction.

Unfortunately, there 1s little prospect of realizing an "etlas of
graphs" of that kind - even for qulte specilal systems with two to four
degrees of freedom the flutter characteristics depend on 10 to 36 freely
disposeble paremeters. Besldes, even if such atlases dild exlist, ex- -
tensive Individual investigetlons would still be necessary - merely
the clesslfication of a certain single construction within such an
atlas would require the determination of decislve characteristics of
that deslign, which 18 an essential part of an iIndividual single in-
vestigation.

The uncertelntlies 1n the formulatlon for the alr force seem to
suggest, for flutter investigations, that all calculetions be omlitted
and all problems be instead clarified by use of wind-tunnel models
similar to airplanes. However, one may call such tests superior to
calculations only 1f the model has to a sufficlent degree the aero-
dynamic properties as well as the spring-mess and structural-member
demping characteristics of the actual system. This requires, on one
hand, performaence of the tests at the correct Mach numbers, on the
other, an internal model structure which is essentlally simuleted to
the actual system and thus renders the latter's compliceted bending,
torsionsl, end camber characteristics - a modern alrplane construction
is usuelly not replacesble by a stick with straight elastic axis.
Also, the model must nowhere show higher structural-menber demping
coefficlents than those corresponding to the actual system. In view
of the technical difficulties in even spproximately satlsfyling such
requirements and gueranteelng thelr fulfillment, the construction of
such & model progresses only slowly, according to all experiences.
Consequently, the wind-tunnel test wlth correctly simuleted models
cannot be used for constructive decislons concerning the flutter
problem at the design stage of an alrplane, and such decislons can
therefore be made In practice only according to calculations.

Tests with correctly simmlated models are intrinsicaelly signifil-
cant in thet they meke a conclusive checking of the flutter charac-
teristics possible, but here again frequently extensive calculatlions
are required, elther because, after all, in the end some model data
deviate from actual conditions and thus require an additional calcu-
lation for evaluating these deviations, or because unexpected results
perhaps make a too high damping of the model or other discrepancles
seem probable - aside from the fact that the Mach numbers of such a
test most probably wlll not agree with those for actusl conditlons.
Of course, these obJections do not refer to model tests of the funda-
mental type, such as are necessary for obtalning data for detalled
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celculations; such baslc tests do not depend on the model's actually
reproducing one particular airplane.

The considerations sbove were meant to show from what viewpoints
the DVL at present treats the .problems of flutter calculations. In
closest colleboration with the alrplene industry, the attitude of the
DVL proved to be right. Only in exceptional cases, single problems
encountered by the industry could be clarified lmmediately from
empiricel facts, dlagrams, etc; usually individuel celculations were
required for the ultimste decilsion. -

II. NATURE OF THE FLUTTER CALCULATION

A. Mode of Consideration

Because of the addition of the alr forces to the inertia, spring,
end dempling forces of the alrplane structure, a flutter calculation
must necessarlly be more complicated than the otherwise known oscilla-
tion calculations. Furthermore, modern sirplane structures represent
complicated combinations of fremework end monocoque structures with
cut-outs, hinged control surfaces, and auxiliary control surfaces,
locally concentrated single masses, etc. Such structures can no
longer be represented so as to be surveyeble as easlly as, for instance,
sticks with stralght elastic axis and well-defined bending and tor-
sional stiffness. Accordingly, setting up differential or integral
equations of the flutter process generslly does not by any means imply
a satisfactory answer to the technical problem.

Since it is imperative to introduce as few "unknowns" as possible
into technical calculations, it would normally be inexpedient to in- -
dividually regard as unknown, for instance, all elements of motion
(peths, torsions, varlations in camber) required in a complete descrip-
tion of the flutter condition. Rather 1t will be advisable to con-
centrate only on a few particular combinations of all motion elements
(compere fig. 4), that is, certain "elementary forms" Fy(x,z); more

wlll be said below on thelr selection (x,z = space coordinstes). The
unknowns then would be the scales ey &t which these elementary
forms Fy must be superimposed on one another, 1ln order to describe

approximately the actual flutter condition B8(x,z;t). At first, these
scales &, are, of course, unknown functions ak(t) of time. However,

it should be noted that in a motlon according to forms ¥, prescribed

in this menner a state of dynamic equilibrium can be esteblished only
when one takes into consideration the additional forces which would
bave to atteck at the system if it actually should carry out this form
of motion. Hence, it is adviseble to use formuletions stemming from
the principle of virtual displacements for in case of displacements in

19k
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the sense of any forms the restralnt forces do not produce work and thus
drop out of the mathematical formulation. . The equations of motion for
calculation of the time-dependent superimposition scales eai(t) of the

separate elementary forms Fyx then may be directly set up formklly in
the form of Lagrange's equations.

The difficulty In this treatment is the selectlon of approprilate
elementery forme. The natural osclllation modes of the system and
modes somewhat similar to them are given preference Iin this respect.
As Borkmann hes shown recently, a group of n such modes F can be
examined as to 1ts sultabillity by determination of the air-force dis-
tributions which would pertain to osclllations according to every
single one of these modes ¥F; the question then 1s whether 1t is
possible, in turn, to approximate these alr-force distributions by
superimposition of the assuméd n modes F.

Unfortunately, quite a number of such groups will usually be
found appropriste according to the sabove procedure so that there 1s
practically no wey other than to perform several flutter calculatlons
with different choice of elementary modes until the minimum critical
veloclty 1s rellsbly determined. The lower natural osclllation modes
with few node lines are, of course, the most lnteresting ones, since
for them the internal damping i1s small compared to the ebsorbable
alr-force energy.

In starting the design, one is interested first in wings and
fins without control surfaces in order to meke sure that the "basic
structure"” is "all right" with regard to flutter. Next, the effects
of control surfaces and auxiliary control surfaces, of controls and
various fine detalls, are of interest.

The menipuletion of flutter calculations would be made unneces-
sarily stlll more complicated if one should, for each separate calcu-
lation, rigorously teke into consideratlon thet the scale factors ak(t)
ere, at first, open functions of time. (Compare fig. L4.) Hence, it is
advisable also to interpret the individuel scale factors ak(t) in

turn es superimpositlions of a seriles of prescribed functions °kg(t):

with g =1,2, . . . . (Compare fig. 4.) The unknowns in the
mathemetical formulatlon then are, ultimately, the individual super-
imposition scales &y, Of these time functions ng(t). The required

determining equations are suitably set up formally with the use of
Gauss' principle of minimum constraint.

Concerning the question of which time functions are to be con-
sidered for a technical flutter calculatlon, a generel indlcetion
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results, first, from the physically triviael fact that, for sufficlently
small relative alrspeed, every oseclllation originally is necessarily
damped, that therefore the transition.to an exclted oscillation must
take place over a purely perlodic intermedilete state. It can be demon-
strated that usuaslly several such intermedlate states between damping
and excitation or vice versa exlst for a system. For the time being,
only the lowest of these intermediate states is of technicel interest,
thus a state which leads from the originsl demping to the first excita-
tion.l In practice, this intermedlate state is mentlioned as & harmonic
state; that 18, cos wt and sin wt are selected as prescribed time
functions okg(t) and are suitably interpreted as components of the

complex expression edwt. It is, however, absolutely to be expected
that in the future higher harmonic or any diminishing or increasing
time functions, respectively, will also be included in the formulatlon.

The advantages of a purely barmonic oscillation formulation can
of course be utilized only under the presupposition that harmonlc forces
pertain to harmonic motions. How far this 1s admisslble with respect
to the actual alr forces and to the structural member damping forces
is, at present, for want of systematic tests, an open question. EHow-
ever, it certainly involves considerable arbitrariness in the case of
systems conteining a spring with initilal tenslon, that 1s, of power-
controlled control-surface mechanisms and of systems with free play.

B. Flutter Equations

After all these restrictions 1n posing the problem, the flutter
equations may be set up formally as linear equation systems for the
unknown superimposition scales ay of the separate elementary

modes F, (compare fig. 5); then the 1*B equation, for instance,

expresses the following: The internal and external forces which
would appear in flutter according to & linear combination of all
elementary modes Fy all together must not produce work if the

system 1s assumed deformed in the sense of the elementary mode Fy.
Correspondingly the separate coefficients By, of the flutter equa-

tions are lntegral expresslons over products of the forces of a
state "k" and the motlons of a state "i"; they are thus analogous
to the coefficlents of the so-called elesticity equations, which

are familiar to anybody working 1ln statics research; they can be divided

into inertia, spring, air, and damping members.

lTherein the simplifying assumptions on which the alr-force formulation
is based may ceuse certain difficulties; more detalls on this are
contained in a research report by Leiss soon to be published.
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Borkmenn recently wrote an exhaustlive treatise on the nature of
these individuael component terms (compare fig. 5) and their determi-
nation from calculations and tests. He therewith provided the long-
needed continuation of various trains of thought, indicated by the
euthor in the Luftfahrtforschung 1939. A. Borkmenn calls the separate
components "mass, spring,’air force, and damping characteristics.”

Normelly the mass surface distrlbution will be known. The determi-
natlion of the mass characteristics then offers no difficulties whatsocever.

Determinstion of the spring characteristlics, however, is less simple;
the quantity py entering there (compare fig. 5) is the loading which

would have to attack on the airplane in order to force upon 1t exactly
the deformation Fy. Determination of pf 1s simplest when the

elementary mode Fi 1s precisely e nstural oscillation mode of the
system, beceuse in that case pEF equals the product of mass surface

distribution, amplitude distribution Py, and the square of the natural
clrcular frequency o, pertaining to Fy.

In practice, however - ebove all in varilatlonal considerations -
the elementary modes selected often will deviate more or less from the
naturel osclllation modes. Then it is expedient, first, to determine
separately the deformations pertalning to a serles of load conditioms,
and then to superimpose the load conditions in such a manner that thelir
resultant deformation sgrees as well as possible with the elementary
mode Fyp. The former superimposed loading then is practically the

required loading py.

Of course, the spring characteristics thus found are relisble only
1f in their determinstion the preloading existing in flutter which is
produced by the steady 1ift of the alrplane also is taken into considera-
tlon, for the preloading determines, among other things, the wrinkling
and mey thus cause considereble variations of the elastic properties.

With the mass characteristics known, the spring characteristics
may be determined also from the natural-oscillstion conditions of the
alrplane, in practice, for lnstance, on the basls of ground oscilla-
tlon tests whlch have to be performed, 1f necessary, with a preloading
with soft springs. For this purpose, the individual natural-oscillation
mode first l1s spllit up epproximately into components equal to the elemen-
tary modes used. The resulting component coefficients of the individusl
constituents are inserted in the "static oscillation equations” as known
amplitudes a, in order to then determine from them the spring charac-
teristics contained in them. Correspondingly, one may of course deter-
mine the mass characteristics 1f the spring characteristics have been
determined otherwlse.
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Borkmann, I1n his aforementioned treatise, calls the methqds in-
dicated "superimposing end splitting-up methods." All detalls con-
cerning thelr nature and the manifold possibilities for thelr use
are systematically treated in that report; of special interest are
the possibllities discussed therein for using the methods for deter-
mination of the air-force cheracteristics from oscillation tests in
the alr stream, inasmuch as the mass and elastic characteristics
have already been found in another way. Above all, such tests are
significent in thet they may be used for general statements on the
air-force laws of the oscillating wing. Neturally, simple models
may be used to which the initially mentioned restrictions regarding
the applicebility of the model test do not apply.

Flutter calculations of today are characterized by the linearized
eir-force formulations for the harmonically oscillating wing strip in
the - stripwise two-dimensional - flow of an 1deal fluid such as were
first developed by Kilssner and later on extended according to various
viewpoints and adapted to practicel use by Theodorsen, Ellenberger,
Schwarz, Sohngen, and Dietze. The formulas at present ready for use
deal, above all, with motions in broken and separated straight lines
such as those shown in figure 6. The imaginery models indicated
there represent various interpretations regarding the effect of a
wing strip with control surface and apply likewlse to additional
auxiliery control surfaces. Also 1t is not difficult to insert, if
necessary, curvatures into the form of motion. Dietze's exposition92
contein some ldeas on the selection of the suitable imsginary model in
the individual case.

In calculations with these air-force formuletions executed at -
the DVL, 1t proved desirable to be esble to obtain all entering
functions directly from curve tables. Thus the DVL recently in-
stigated, for maximum time saving, the preparation of suitable curve
tables uniform for sll functions required in all interpretations of
the wing with control surface and auxiliary control surface shown
in figure 6. :

The few tests which, so far, give informstion on the validity of - - — .
the customary eir-force formuletions show that for systems with control’
surfaces certain modificatlons are necessary even for smallest Mach
numbers. Thus Volgt recommends, according to his flutter tests,
certeln reductions of the control-surface chord ratio used.

It is quite certaln by now that the customary air-force formula-
tions no longer apply in ceses of higher Mach numbers; therefore, modern

2Dietze, F: Vergleichsrechnungen zum eerodynemischen Ruderinnenausgleich. i
Lilienthal-Gesellschaft Bericht 135, pp. TO-Tk. :
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flutter calculations should take the compressibility of the alr into
consideration, all the more so since the formulations for Mach
numbers € 0.7 set up by Posslo can be directly epplied to arbitrary
imaginary models. It 1s true that then for eny lmsglnsry model that
happens to be in use, the numericel eveluation of & complicated
integrel equation becomes necessary which expresses the adaptation

of the flow varlation to the dimenslons end pecullarities of that
imeginary model; this numerical evaluatlion must be made ln successlion
for all reduced frequencles . = -@v-% and Mach numbers in question
(o = circular frequency, v = relative airspeed, 1 = wing chord).
Possio has already carried out the evaluation to a larger extent for
the wing strip without control surface. '

Of course it would be veluable 1f one could so modify the formula-
tlons customary since that time from the assumption of an ideal fluild
that they can serve as mensgesble approximste formulas for compressible
fluids; such attempts have been made occasionally, for instance with the
use of Prandtl's rule for steady flow. As far as is known, however,
these endeavors falled or could not be generalized.

It 18 also sure at present that the assumption of stripwise two-
dimensionel flow may fall to work; according to tests and calculations
by Clcale, for instance, in case of so-called reduced frequencles

w
r=3
question of numerically evaluating an integral equation for every
individusl cese and for every required reduced frequency. Here also
1t willl be correct to use first the formulatlons neglecting as little
as possible and to turn to simplifications only after thelr admissi-
bility has been proved. Accordingly, Kiussner's and Possio's formula-
tions are the first to be considered. Here, too, 1t would, of course,
be valugble if one could so modify the expressions for stripwise two-
dimensional flow now in use that they would represent menageeble epproxi-
mete formulas for consideration of the inductlon.

® %<1.o. Here elso 1t is, for more accurate calculations, a

Independent of these analytical posslbllities for perfecting the
alr-force formulations for flutter celculations, 1t is, of course,
imperative to check and develop them by means of tests. This includes,
among other requirements, e careful clarification of their linear -
additivity.

Thus it would be ideal 1f the interference method developed by
Zobel would soon be made dlsposable for air-force messurements on the
oscillating wing. Independent of theit, the DVL intends to expedite
indirect air-force determinetion from model osclllation tests,
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charaecterized previously in the discussion of the goﬁceptions "super-
imposing and splitting-up methods." Volgt reports> on tests of that type.

Far more uncertain than even the basis for the air-force charac-
teristics are the date so far at disposal for the formulation of the
demping cheracteristics. At the time it is not even.known whether
it is at all permissible to linearly superimpose on one another the
damping components corresponding to different motion components.
Doubts concerning this fact arise from the obvious comparison of
structural-member dampings with friction forces which surely pley a
role in it; for frictlon forces, & linear superimposition certainly
is not possible.

Thus, when todey 1t is still regarded frequently as a rule, on
principle, to neglect the structural-member damping in flutter calcu-
lations, this fact may be Justifiable because this neglect will
usually amount to & measure on the safe side unless the damping
causes, exceptionally, a very far-reaching change in the coupling
relationships. However, with the neglect of the structural-member
demping, the actual numerical representation of the critical velocity
is basically ruled out, and the flutter calculation merely permits
separating the availlaeble designs into flutter-safe structures and
into structures with flutter risk. Especlally, recently there arose
repeatedly the necessity of meking use of structural-member damping,
possibly even artificial damping in order to Justify semsitive con-
structions. Taking such cases into consideration, Boelk and Schmidt
performed experiments regarding the problem of damping years ago.
Systematic investigation of structural-member demping often hes been
contemplated at the DVL. The first task will be to determine certain
minimm velues for the damping coefficilents which in case of need may
unhesgltatingly be used in calculation.

III. RATIONALIZATION OF THE CALCULATION

A. Simplified Alr-Force Characteristics

In view of the uncertainty of any determinetion of characteristics,
the expenditure of flutter calculations is in an unfavorable proportion
to their reliebillity. In calculation with the alr-force formulations
customary at present, a considereble part of the work 1s spent on the
numerical eveluation of integral expressions of the form

fD(z) T[‘-T! ﬂ-l] dz

Z
v e

3Voigt, H.: Messung instationsrer Luftkrafte. Lilienthal-
Gesellschaft Bericht 135, pp. 90-93.
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(z = coordinate in direction of width, @ = circuler velocity, v = rel-
etive airspeed, 1(z) = wing chord at point z); for these”expressions

must be computed for numerous velues of the ratlo %. (Compare fig. T.)

As Borkmann has shown in the afore-mentioned report, this evaluation
mey unhesitatingly be shortened, if the transcendent fumctlions appearing

in the integrand
ol@ 1(z)
v 2
are spproximetely replaced by an-expresslion of the form
o1
o + a2 L2

since then only the space function D(z) which is independent of m/v
remalins under the integral sign.

Leiss went even further when he replaced — originally only for
fundemental consideratlons — the functions mentioned

by constent amounts. It was shown that in this manmner, too, practical
flutter calculations can still be performed; however, it is then advis-
eble for sefety reasons to lntersperse occeslonal spot checks according
to more accurate celculations Into every serles of varlations of the
parameters of interest — in these spot checks Borkmenn's simplifications
may of course be used. Figure 8 shows dependence curves calculated
according to Leiss' simplificaetion end interspersed with numerous spot
checks; the figure glves an ldea of the effect of Leiss' approximation.
Neturally, only the agreement at the heavily drawn sections of the
lower limiting curves of the flutter reglon ls of practical Interest.

With Leiss' simplification and s spot check according to Borkmann' s ’
the expenditure of a varlatlonel consideration with three degrees of
freedom, for instance, mey be reduced from 47 to 16 days (under the
presupposition that all spring and mess cheracteristics are prescribed).

B, Method of Calculation

The other reason for the large work expenditure of flutter calcu-
lations lies in the search for the critical veloclity after the matrix
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" of the flutter equations has been determined, the elements of which are .
known to contain the critical velocity v, and the flutter frequency wer. v

The DVL was repeatedly faced with the necessity of declding on the
fastest method of determining the critical values v, @ without taking )
into consideration closely related secondary problems, as for lnstance -
the increase of the flutter amplitudes after the critical velocity has -
been eXceeded. L -

On one hand, the critical state may be found from the flutter =
determinant (it then practically amowmts to experimentation to find '
at which velues of v, @ the determinant disappears); on the other
hand, however, the critical state mey be determined directly from the
flutter equations; then it is practically s matter of obtaining by T T
iteration the flutter form and therewith the critical velocity. )

The treatment of the determinant mey consist in first splitting it
up into a real and a purely imsginary component A' and A'' and then
plotting the amounts of the component determinants for different peirs
of values of v, w.

For asnother treatment of the determinant, one may use the real
notation.

Besides these primitive methods, specilal ones may be used, but only
ingofer as nstural osclllation forms are selected as degrees of freedom,
or as sultable transformations are performed first (which is probably
impossgible at the outset in variational considerations of the type
initielly described); furthermore, these methods require that the demping .
be neglected. g

We willl firat neame a promising method, suggested by Borkmsnn in
his efore-mentioned report, as one of the conceiveble possibilities of
arriving at the pair of critical values v, w directly from the flutter
equations; it consists 1n step-by-step improvement of a component system
selected from the flutter matrix by adequate use of all flutter equations.
Another possibility 1s to improve en assumed flﬂt‘ber form 'by meens of
repeatedly cerrying through the energy balance. e~

In a report, as yet unfinished, Mayer has made estimates regerding
the work expenditure for such methods., The points in figure 9 show &
preliminary result; one is at liberty to double or halvée the indicated
work periods. The curves shown there are velld for calculations with
formulation of the customery alr-force laws and neglect of the structural
member damping. One notices first of all the great adventage the iteration
methods promise for more than five degrees of freedom. Unfortunately
this advantage is counterbalasnced by the fact that (due to the entering

l‘(Jom'_r,)a.re Teichmenn, Luftfahrtforschung (Aviation Research) 1939. .
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of the two peremeters v and ®) it is quite uncertain in the individusl
case whether the method wlll converge toward the group v, @ of minimm
velocity, or perheps toward snother group which 1s of no technical
interest, but would then possibly be regaerded as the decisive pailr of
values, For this reason, an entire region for the iteration methods hes
been plotted in figure 9. Its lower limiting curves are valid for & cal-
culation with a certain initial system by carrylng through two iteratlon
processes; its upper limiting curve shows what the expenditure would be
if, es & precaution, three different ilnitial systems were tried out.

The questlon of whether the minimum criticel veloclty of the system
under conslderatlion 1s actually found in thils menner remeins open, of
course; besides, so far there exists no evidence whether and under what
circumstences the iteretion methods for the flutter problem converge at
all. In view of the present state of lknowledge one should forego the
use of iteration methods, 1f there are no rellable comparisons avallable.

The more Involved methods which stert directly from the flutter
determinant are free from these disedventeges. In case.of less than six
degrees of freedom, 1t is there obviously edviseble (according to fig. 9)
to.split the determinant into its reeal and imaeginery pert; for more
degrees of freedom, however, the use of the real notation seems to be
more advantegeous wlth respect to time.

As figure 10 shows, splitting up of the determinant into a real
and an lmeginery pert is advisable also In case of more than six degrees
of freedom when Leiss' simplificetion of the air-force formulation (for
instence T' =T'' = 0) 1s used.

Figure 11 shows the work expenditure if the calculator uses instead
of the customery eir-force formulations alr forces determined, for instance,
by means of experiment so that varilous theoreticel relations do not enter,
It 1s Interesting that, in this case, use of the real determinent 1s more
expedient than use of the determinant split up into real and Imasginary
parts.

At present, it 1s stlll necessary to represent the combined effect
of e larger number of degrees of freedom by separately considering numer-
ous partisl systems with two or three degrees of freedom each with the
expectation thet one of them suffice to essentielly describe the flutter
characteristics of the entire system. In some cases, this might be more
or less Justifisble by evaluatlon of the coupling relationship existing
Just then. In meny cases, however, some points remein unclear; therefore,
such a procedure should be used only as & last resort. Thils unfavorable
sltuation can be changed only by considerebly restricting the computation
times indicated in the figures. In practice, nothing at all 1s gained by
suggesting that these times be reduced by 20 or even 50 percent; rather,
it will be necessery to reduce them to 1/10 or 1/20 of the emounts given
In the figures. . .
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This 1s posslble only when automatic calculation devices are used
such as are already employed for other purposes in America and England.

In flutter problems such devices must accomplish two tasks: On one
hend, they must determine the characteristics which requires above all
the forming of multiterm product sums; on the other hand, they must solve
the flutter determinent or, respectively, the flutter equations for the
desired perameters v and . Zuse now is developing a device which 1is
to be sultable for both these tasks and many more., His device differs
from those known so far by the fact thet 1t expresses all numerical values
in yes-no combinations of telephone relays; the course of the desired
operations 1s then controlled by a prepared perforated tape. The DVL has
teken over the development of this device.

DISCUSSION TO THE LECTURE OF A. TEICHMANKR

Bock.~ It seems to me that one of the most important viewpoints is
that the lecturer performs his calculations with consideration of different
parameter veriastions and thus finds out which combinations of design
perameters are unfavorable. For in the construction of airplene models
the individusl parameters are not ebsolutely fixed but vary somewhat
from specimen to specimen so that avoidance of such unfavoreble parameter
combinations 1s Important.

Furthermore, I deem important the efforts towerd restricting the
calculatlon expenditure, by mechanization of the calculation s 8o greatly
that one may in the project stage obtain really ussble surveys of the
critical velocities as speedily as possible.

Quessel,- Teichmann mentioned in his lecture , among other things,
the sensitivity of the criticel velocity with respect to the design
paremeters; therefore, I should like to state our opinion on this problem,
and 1llustrate 1t with a few examples, in particular, just on the example
glven by Teichmenn. We are dealing here not with laws of nature but with
conclusions from e calculetion experience which, of course, admite
exceptions. .

A sensitivity of the critical velocity appears ordinerily only in
the following cases: : .

1. When in addition to a stubborn flutter possibility, a harmless
flutter possibility exists. ) -

By a stubborn flutter possibility, we understand one that is hard
to eliminete, by & harmless flutter possibility, in contrast, one which
can easlly be eliminated by relatively simple structurel measures. The
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conception "harmless flutter possibility" has no connection with the
conception of "benign" flutter. The harmless flutter possibllity must
be eliminated, as a rule, because it causes too low critical velocities.
Then the stubborn flutter possibility with higher values of critical
veloclty remsins which ordinarily 1s not sensitive with respect to the
construction parameters. Thus, a sensitivity no longer exlsts after
the required changes concerning the flutter possibility of the airplare
have been carried out. )

I should like to take, as an example, the case nemed by Teichmann
for illustration of the sensitivity; we interpret it somewhat differently.
Figure 1l(a) shows the variation of the critical velocity, calculated
with three degrees of freedom bending-torsion-control surface, as a
function of the control-surface unbalance with a sensitivity of the
critical velocity with respect to the alleron unbalance for rearward
position a, as shown in Teichmann's lecture. (I sketched the figure
from memory.) Figure 2(a) shows the diagrem as it would appear
according to our opinion if the deshed pert of the curve were left
out, and the limitation to minimum values of critical veloclty dropped.
One recognizes that one deals here with two different types of flutter:
first, the harmless bending, flutter which, due to the agreement between
flutter and bending frequency, shows low velues of critical velocity
and a limited range of excitation and can easlly be eliminated by
damping or mass balance of the control surface; second, the stubborn
or intrscteble torsional flutter which remains after elimination of
the bending flutter and shows, due to the approximste agreement
between flutter and torsional frequency, higher values of critical
veloclty and no limited range of excitation. This second type of
flutter may hardly be wholly eliminated, is insensitive with respect
to deslgn parameters, and therefore ordinarily permits only a moderate
increese in critical velocity by structural measures,

2, When the critical velocity is very high and, consequently, its
dependence on a change in construction parameters is not of interest.

We take as an example the dependence of the critical veloclty on
the mass coupling for & wing with fixed ailerons (fig. 3(a)) which
shows a sensltivity of the critical velocity with respect to the mess
coupling in the region & - b. Since flutter of three-dimensional
wings with fixed aileron ordinerily sets in - even for the most
unfevorable value of mass coupling - only at sufficiently high
velocities, this sensitivity is not of interest.

3. When one deals with a physically impossible calculatlon result
which, due to the imperfection of the assumed deformetion lines, occurs
in a region sensitive for calculation.
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We take as an exsmple the dependence of the critical velocity,
calculated according to the power criterion, on the bending frequency
for a three-dimenslonal wing with the degrees of freedom bending-
torsion-control surface (fig. 4(a)). In the region of curve 2, one
could speak of a sensitivity of the critical velocity with respect
to the bending frequency. As I explained in detail in my contribution
to the discussion of Dimpker's lecture, the critical velocity zero is ~
impossible for a three-dimensional wing if even one single degree of
freedom is elastic. In order to eliminete curve 2, one would have to
perform an itersetion, which is very itroublesome. We introduced material
damping. It was found that a very small value of materisl damping was
sufficlent to eliminate curve 2.

Thus a sensitivity of the critical velocity wilth respect to the
construction parameters - the thing that matters - will hardly occur.

Teichmann expressed the opinion that 1t is not of importance to
calculate a single critical velocity but to evaluate the safety
against flutter within a larger scope which is made possible, among
other expedlente, by variation of different comstruction parameters.
Furthermore, Telichmann pointed out that the number of parameters is
very high. We are absolutely of the same opinion; therefore, we
always carry out variations of the construction parameters. In
selecting the parameters to be varied, we favor those with the
following characteristics: )

1. The comstruction parameter has a great influence on the
critical velocity.

2. The determination of the perameter is unreliable.

3. Variation of the parameter is convenient with respect to
calculation technique.

In thls menner, we arrive at & restricted number of variations
in construction parameters and thus at a tolerable work expenditure.

The intention of the DVL to follow up the problem of material
damping is very commendable. For the time being, one is dependent
on the tests compiled by Kissner. These tests result in a minimum
value of the materiel damping a = 0.03. The number of airplanes
investigated 1s not sufficlently large, most of them are not all-
metal airplanes, and all of them are old models. Although the °
material damping usually does not amount to much, knowledge of a
reliable minimum value of material damping is very desirsble for the
following reasons:
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1. If large masses participete 1n the motion, the influence of
internal damping may become declsilve. -

2. In certain frequency ranges the material damping may lncrease
the critical veloclty very considerably.

3. Sometimes the calculation arrives at physically impossible
results which disappear with introduction of material damping, so
that 1nvolved investlgations become unnecessary.

4., In exceptional cases, sensitivities occur when none of the
presuppositione treated sbove are met. These sensitivitles produce
difficulties. As a rule, such sensitivities cease with lntroduction
of a moderate material damping.

Boelk.- Teichmann mentioned a method of Borkmann according to
which an iterative solution of the determinant is suggested, in such
a manner that a partial system of the determinant 1s solved with
respect to v,» and this solution is then lmproved by bringing in
the rest of the determinant. This iteratlon will, no doubt, turn out
to be correct if one has started out by assuming the possibilities of
motion as the fundamental oscillation mode. However, if one has
started out with a higher-harmonic oscillation, 1t will reduce to a
suborder harmonic. How cen that be prevented?

Borkmann.- As already discussed in the research report FB 1338,
no proof of comvergence for the iteration method mentloned exists so
far. Just as for any flutter calculation of an aslrplane, no more
than three or four are singled out as decislve from the large number
of degrees of freedom; here also a partial determinant is singled out
from the entire determinant in the expectation that the flutter mode
of the total system will not greatly differ from that of this partial
system. As far as this expectation comes true, the lteration method
offers a good chance of Improvement. Otherwise, of course, the
application of this lteration method may encounter difficulties.

Leiss.- Telchmann's remarks on the sensitivity of a system to
fluctuations in comstruction parameters purport that it is not
sufficient to investigete a system for one particular combination
of construction parameters only but that, rather, it is necessary
to include a certaln verletion range of the separate construction
parameters in order to find possibly existing sensitivities. Obvi-
ously, such sensitivities are to a large extent avoldable, but to
that end they must first be determined.

Translated by Mary L. Mahler
National Advisory Committee
for Aeronautlcs



Vor = critical velocity

og = natursl circular frequency of the control-surface torsion
on = naturel circular frequency of the wing torsion
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Figure 1.~ Harmful and harmless frequency region (systems with three degrees
of freedom: wing bending, wing torsion, control-surface torsion).
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Vop = critical velocity

Xg = position of the auxillary control-surface center of gravity.,
Compare sketch of syatem
Yoohl ™ natural circular frequency of wing bending

wp = natural circular frequency of control-gurface torsion
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Figure 2.- Rules for design fail to work (system in the sense of the two-
wing bending,

dimensional problem with three degrees of freedom:
control-surface torsion, auxiliary control-surface to

rsion),
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Three degrees of freedom -
three-dimensional
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Vop = critical velocity
Xp = position of control-surface centsr of gravity
wp = natural ¢ircular frequency of the control-surface torsion .
w_ = natural circular frequency of the wing torsion

D
uschl = natural clrcular frequency of the wing bending
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Filgure 3.- Variation of a construction parameter (system with three degrees

of freedom: wing bending, wing torsion, control-surface torsion).

5(x,2; ) -Zk g (t) * Fylx,)
S
- %[ak' * coswt - ax" * sin ui] * Fy{x,2)
. t. X,Z
Bh e
(- g ak * ok(xpz; t))

Figure 4,- Formula for the flutter process.
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Motion formula: dop(X,Zit) = gli * Piix,2) - ot

Flutter equations: T nll(v,u) + 8 ° alz(v,a) + et By Bln(""")' =0,

1 ° Bpy(v,d + 8y - Bgg(v,u) + ceue + 8 ° By (Vyu) = 0,

:‘1 ° Bnl(v’u) + % . an(v,u) + ceee ﬂn * Bnn(v,u) =0

- amplitudes of Ft(x,zi)

Coefficients: . B,_k(v,u) - fpk(v,u; Cous) * F1 » AV

-jka(c...) *F - AV +‘fka(w;c...) RELAS A ur.) - F, dv)
%m +“2p-vu‘ +‘;QU)

g

+fpk‘aR(u;c...) *Fy ¢ a0 +‘[pk§s (v, 0Cus) * Fy- do +J pk‘as “(v,u',c...) -Il'1 . do
\ Ve J s J

+ up - ’11;(0) - v - ?m(‘!r) —vup ik(g_)

Figure 5.- Flutter equations,

Figure 8.- Aerodynamic control-surface balance (interpretations).
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Example (for % = 0,25)

. v
Aik (3) " ""+ka(z) d T'E:r(z)]dz + eeen I-
af®) =2« !%g)_ ! z(lz)

Simplification [Ior Di.k(z) > g-l:

j‘Dik(Z) - T [ur(z)] dz % T'(ur*) . JnDik(Z)dz

m*'_'g"!é:‘vith ¥ =b’k(z)' [

Assumption used as basis:

mrl roala, o } It
T t.»r(z) dz % aq + a'V"’r(z)

z = coordlnate in direction of span width
1(z) = wing chord at point =z

Figure 7.- Slmplified determination of the alr-force characteristics.
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Two degrees of treedom

km/h km/h I three~dimensional
\i_o_,‘_ Three degrees
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two-dimensional °
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® Contirol calculation T
Two degrees of freedom Two degrees of Ireedom
km/h three-dimensional km/h I three -dimansional
] e f .
Ver Ver
400 1000+ ey, small
v large
200 -
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Vop = critical velocity

Xp, Xg = position of control-surface and auxillary control-
surface center of gravity

GID = torsionsal stiffners

Figure 8.~ Alr forces simplified,
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Flgure 9.~ Calenlation timeg reqiired for solution
of the flutter equations with use of the complete
air-force formulations (calculation times of one

single calculator in months),.
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Figure 10.- Calculztion times required for solution
of the flutter equations with use of simplified
formulations for the alr forcea (calculation times
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Figure 11.- Calculation times required for solution of the flutter equations -
without limit rule for the air forces (calculation times of one single :

calculator in months).
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